On semi generalized star \(b\)- Connectedness and semi generalized star \(b\) - Compactness in topological spaces
Downloads
DOI:
https://doi.org/10.26637/mjm501/013Abstract
In this paper, the authors introduce a new type of connected spaces called semi generalized star \(b\) - connected spaces (briefly \(s g^* b\)-connected spaces) in topological spaces. The notion of semi generalized star \(b\) - compact spaces is also introduced (briefly \(s g^* b\)-compact spaces) in topological spaces. Some characterizations and several properties concerning \(s g^* b\)-connected spaces and \(s g^* b\)-compact spaces are obtained.
Keywords:
\(sg^*b\)-closed setsMathematics Subject Classification:
54C05, 54C08, 54C10- Pages: 143-148
- Date Published: 01-01-2017
- Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
Ahmad Al - Omari and Mohd. Salmi Md. Noorani, On Generalized $b$ - closed sets, Bull. Malays. Math. Sci. Soc(2), 32(1)(2009), 19-30.
S.S. Benchalli and P.M. Bansali, $g b$ - compactness and $g b$ - connectedness in topological spaces, Int. J. Contemp. Math. Sciences, 6(10) (2011), 465-475.
S.G. Crossley and S.K. Hildebrand, Semi-topological properties, Fund. Math., 74 (1972), 233-254. DOI: https://doi.org/10.4064/fm-74-3-233-254
P. Das, A note on semi connectedness, Indian J. of mechanics and mathematics, 12 (1974), 31-34.
J. Dontchev and M. Ganster, On $delta$ - generalized set $T_{3 / 4}$ spaces, Mem. Fac. Sci. Kochi Uni. Ser.A. Math., 17 (1996), 15-31.
C. Dorsett, Semi compactness, semi separation axioms and product spaces, Bull. Malay. Math., 4 (1) (1981), $21-28$. DOI: https://doi.org/10.1155/S0161171281000318
M. Ganster, D.S. Jankonc and I.L. Reilly, On compactness with respect to semi-open sets, Comment. Math. Uni. Carolinae, 31(1) (1990), 37-39.
M. Ganster and Mohammad S. Sarsak, On semi compact sets and associated properties, International Journal of Mathematics and Mathematica Successes, 2004, article id 465387, (2009), 8. DOI: https://doi.org/10.1155/2009/465387
M. Ganster and M. Steiner, On some questions about $b$ - open sets, Questions Answers General Topology, 25 (1) (2007), 45-52.
F. Hanna and C. Dorsett, Semi compactness, Questions Answers General Topology, 2 (1984), 38-47.
S. Sekar and B. Jothilakshmi, On semi generalized star b - closed set in Topological Spaces, International Journal of Pure and Applied Mathematics, 111 (3) (2016). DOI: https://doi.org/10.12732/ijpam.v111i3.7
S. Sekar and B. Jothilakshmi, On semi generalized star b - closed map in Topological Spaces, International Journal of Pure and Applied Mathematics, accepted for publication.
A.M. Shibani, $r g$ - compact spaces and $r g$ - connected spaces, Mathematica Pannonica, 17(2006), 61-68.
A. Vadivel and Vairamanickam, $r g alpha$ - interior and $r g alpha$ closure in topological spaces, Int. Journal of Math. Analysis, 4 (9) (2010), 435-444.
- NA
Similar Articles
- S. Sekar, G. Kumar , On generalized \(\alpha\) regular-interior and generalized \(\alpha\) regular-closure in topological spaces , Malaya Journal of Matematik: Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.