General solution and generalized Ulam-Hyers stability of a generalized 3-Dimensional AQCQ functional equation
Downloads
DOI:
https://doi.org/10.26637/mjm501/014Abstract
In this paper, we achieve the general solution and generalized Ulam-Hyers stability of a generalized 3dimensional AQCQ functional equation
$$
\begin{aligned}
&f(x+r(y+z))+f(x- r(y+z))=r^2[f(x+y+z)+f(x-y-z)]\\&+2\left(1-r^2\right) f(x) + \frac{\left(r^4-r^2\right)}{12}[f(2(y+z))+f(-2(y+z))\\&-4 f(y+z)-4 f(-(y+z))]
\end{aligned}
$$
for all positive integers \(r\) with \(r \geq 2\) in Banach Space using two different methods.
Keywords:
Additive functional equations, quadratic functional equations, cubic functional equations, Quartic functional equations, mixed type functional equations, generalized Ulam - Hyers stability, fixed pointMathematics Subject Classification:
39B52, 32B72, 32B82- Pages: 149-185
- Date Published: 01-01-2017
- Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
J. Aczel, J. Dhombres, Functional equations in several variables, Cambridge University, Press, Cambridge, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
T. Aoki, "On the stability of the linear transformation in Banach spaces," Journal of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. DOI: https://doi.org/10.2969/jmsj/00210064
M. Arunkumar, S. Karthikeyan, Solution and stability of n-dimensional mixed Type additive and quadratic functional equation, Far East Journal of Applied Mathematics, Volume 54, Number 1, 2011, $47-64$.
M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ- mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279-305.
M. Arunkumar, Solution and stability of modified additive and quadratic functional equation in generalized 2-normed spaces, International Journal Mathematical Sciences and Engineering Applications, Vol. 7 No. I (January, 2013), 383-391.
M. Arunkumar, Generalized Ulam - Hyers stability of derivations of a AQ - functional equation, "Cubo A Mathematical Journal" dedicated to Professor Gaston M. N'Gurkata on the occasion of his 60th Birthday Vol.15, No 01, 2013, 159-169. DOI: https://doi.org/10.4067/S0719-06462013000100011
M. Arunkumar, Perturbation of $n$ Dimensional AQ - mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2, 2014, 34-56. DOI: https://doi.org/10.14419/ijams.v2i1.1499
Y. J. Cho, C. Park, and R. Saadati, "Functional inequalities in non-Archimedean Banach spaces," Applied Mathematics Letters, vol. 23, no. 10, 2010, 1238-1242. DOI: https://doi.org/10.1016/j.aml.2010.06.005
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27 (1984), 76 -86. DOI: https://doi.org/10.1007/BF02192660
S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ Hamburg., 62 (1992), 59-64. DOI: https://doi.org/10.1007/BF02941618
S. Czerwik, Stability of functional equations of Ulam-Hyers-Rassias type, Hadronic Press, CityplacePlam Harbor, StateFlorida, 2003.
J. B. Diaz and B. Margolis, "A fixed point theorem of the alternative, for contractions on a generalized complete metric space," Bulletin of the American Mathematical Society, vol. 74, 1968, 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0
P. Gavrut, "A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings," Journal of Mathematical Analysis and Applications, vol. 184, no. 3, 1994, 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
M. Eshaghi Gordji, H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008.
M. E. Gordji, Ebadian, A, Zolfaghari, S: Stability of a functional equation deriving from cubic and quartic functions. Abstr Appl Anal2008, 17. (Article ID 801904) DOI: https://doi.org/10.1155/2008/801904
M. Eshaghi Gordji, N.Ghobadipour, J. M. Rassias, Fuzzy stability of additive-quadratic functional Equations, arXiv:0903.0842v1 [math.FA] 4 Mar 2009.
M. Eshaghi Gordji, M. Bavand Savadkouhi, and Choonkil Park, Quadratic-Quartic Functional Equations in RN-Spaces, Journal of Inequalities and Applications, Vol. 2009, Article ID 868423, 14 pages, doi:10.1155/2009/868423. DOI: https://doi.org/10.1155/2009/868423
M. E. Gordji, Stability of an additive-quadratic functional equation of two variables in F-spaces. J Nonlinear Sci Appl. 2(??), (2009) , 251-259. DOI: https://doi.org/10.22436/jnsa.002.04.07
M. E. Gordji, Abbaszadeh, S, Park, C: On the stability of generalized mixed type quadratic and quartic functional equation in quasi-Banach spaces. J Ineq Appl 2009, 26 (2009). Article ID 153084 DOI: https://doi.org/10.1155/2009/153084
M. E. Gordji, Bavand-Savadkouhi, M, Rassias, JM, Zolfaghari, S: Solution and stability of a mixed type cubic and quartic functional equation in quasi-Banach spaces. Abs Appl Anal 2009, 14. (Article ID 417473) DOI: https://doi.org/10.1155/2009/417473
M. E. Gordji, Khodaei, H: Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces. Nonlinear Anal TMA. 71, 5629-5643 (2009). doi:10.1016/j.na.2009.04.052. DOI: https://doi.org/10.1016/j.na.2009.04.052
M. E. Gordji, Kaboli-Gharetapeh, S, Park, C, Zolfaghri, S: Stability of an additive-cubic-quartic functional equation. Adv Differ Equ 2009, 20 (2009). Article ID 395693 DOI: https://doi.org/10.1155/2009/395693
M. E. Gordji, Kaboli Gharetapeh, S, Rassias, JM, Zolfaghari, S: Solution and stability of a mixed type additive, quadratic and cubic functional equation. Adv Differ Equ2009, 17. (Article ID 826130). DOI: https://doi.org/10.1155/2009/826130
M. Eshaghi Gordji, Stability of a functional equation deriving from quartic and additive functions. Bull Korean Math Soc. 47(1), (2010), 491-502. DOI: https://doi.org/10.4134/BKMS.2010.47.3.491
M. E. Gordji, Khodaei, H, Khodabakhsh, R: General quartic-cubic-quadratic functional equation in non-Archimedean normed spaces. UPB Sci Bull Series A. 72(??), 69-84 (2010). DOI: https://doi.org/10.1155/2010/741942
M. E. Gordji and M. B. Savadkouhi, "Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces," Applied Mathematics Letters, vol. 23, no. 10, pp. 1198-1202, 2010. DOI: https://doi.org/10.1016/j.aml.2010.05.011
M. E. Gordji, H. Khodaei, J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation, Fixed Point Theory 12, no. 1, (2011), 71-82. DOI: https://doi.org/10.1155/2011/454093
M. E. Gordji, H. Khodaei, and Th. M. Rassias, "On the Hyers - Ulam - Rassias stability of a generalized mixed type of quartic, cubic, quadratic and additive functional equations in quasi-Banach spaces," http://arxiv4.library.cornell.edu/abs/0903.0834v2
D. H. Hyers, "On the stability of the linear functional equation," Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. DOI: https://doi.org/10.1073/pnas.27.4.222
D. H. Hyers and Th. M. Rassias, Approximate homomrophism, Aequationes Math., 44 (1992), 125-153. DOI: https://doi.org/10.1007/BF01830975
D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9
D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptotically of Hyers Ulam stability of mappings, Proc. Amer. Math. Soc., 126 (1998), 425-430. DOI: https://doi.org/10.1090/S0002-9939-98-04060-X
G. Isac and Th. M. Rassias, "Stability of $psi$-additive mappings: applications to nonlinear analysis," International Journal of Mathematics and Mathematical Sciences, vol. 19, no. 2, pp. 219-228, 1996. DOI: https://doi.org/10.1155/S0161171296000324
Sun Sook Jin, Yang-Hi Lee, A Fixed Point Approach to the Stability of the Cauchy Additive and Quadratic Type Functional Equation, Journal of Applied Mathematics, doi:10.1155/2011/817079, 16 pages. DOI: https://doi.org/10.1155/2011/817079
Sun Sook Jin, Yang Hi Lee, Fuzzy Stability of a Quadratic-Additive Functional Equation, International Journal of Mathematics and Mathematical Sciences, doi:10.1155/2011/504802, 16 pages DOI: https://doi.org/10.1155/2011/504802
K.W. Jun, H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation, Bull. Korean Math. Soc. 42(??)(2005), 133-148. DOI: https://doi.org/10.4134/BKMS.2005.42.1.133
K.W. Jun, H.M. Kim, On the stability of an n-dimensional quadratic and additive type functional equation, Math. Ineq. Appl 9(??)(2006), 153-165. DOI: https://doi.org/10.7153/mia-09-16
Jun, KW, Kim, HM: Ulam stability problem for a mixed type of cubic and additive functional equation. Bull Belg Math Soc simon Stevin. 13, 271-285 (2006). DOI: https://doi.org/10.36045/bbms/1148059462
Kim, HM: On the stability problem for a mixed type of quartic and quadratic functional equation. J Math Anal Appl. 324, 358-372 (2006). DOI: https://doi.org/10.1016/j.jmaa.2005.11.053
A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, vol. 427 of Mathematics and Its Applications, Kluwer Academic, 1997. DOI: https://doi.org/10.1007/978-94-009-1483-4
D. Mihet and V. Radu, “On the stability of the additive Cauchy functional equation in random normed spaces," Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 567-572, 2008. DOI: https://doi.org/10.1016/j.jmaa.2008.01.100
A. K. Mirmostafaee, “Approximately additive mappings in non-Archimedean normed spaces,"Bulletin of the Korean Mathematical Society, vol. 46, no. 2, pp. 387-400, 2009. DOI: https://doi.org/10.4134/BKMS.2009.46.2.387
M. S. Moslehian and T. M. Rassias, "Stability of functional equations in non-Archimedean spaces," Applicable Analysis and Discrete Mathematics, vol. 1, no. 2, pp. 325-334, 2007. DOI: https://doi.org/10.2298/AADM0702325M
M. S. Moslehian and G. Sadeghi, "A Mazur-Ulam theorem in non-Archimedean normed spaces," Nonlinear Analysis: Theory, Methods & Applications, vol. 69, no. 10, pp. 3405-3408, 2008. DOI: https://doi.org/10.1016/j.na.2007.09.023
M. S. Moslehian and G. Sadeghi, "Stability of two types of cubic functional equations in nonArchimedean spaces," Real Analysis Exchange, vol. 33, no. 2, pp. 375-383, 2008. DOI: https://doi.org/10.14321/realanalexch.33.2.0375
A. Najati and G. Z. Eskandani, "Stability of a mixed additive and cubic functional equation in quasiBanach spaces," Journal of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1318-1331, 2008.
Najati, A, Zamani Eskandani, G: Stability of a mixed additive and cubic functional equation in quasiBanach spaces. J Math Anal Appl. 342, 1318-1331 (2008). doi:10.1016/j.jmaa.2007.12.039 DOI: https://doi.org/10.1016/j.jmaa.2007.12.039
Najati, A, Cityplace Moghimi, StateMB: Stability of a functional equation deriving from quadratic and additive function in quasi-Banach spaces. J Math Anal Appl. 337, 399-415 (2008). doi:10.1016/j.jmaa.2007.03.104
A. Najati, M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl. 337 (2008), 399-415. DOI: https://doi.org/10.1016/j.jmaa.2007.03.104
B. Paneah, "Some remarks on stability and solvability of linear functional equations," Banach Journal of Mathematical Analysis, vol. 1, no. 1, pp. 56-65, 2007. DOI: https://doi.org/10.15352/bjma/1240321555
C. Park, "Fixed points and the stability of an AQCQ-functional equation in non-archimedean normed spaces," Abstract and Applied Analysis, vol. 2010, Article ID 849543, 15 pages, 2010. DOI: https://doi.org/10.1155/2010/849543
C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory and Applications 2011 2011:66. DOI: https://doi.org/10.1186/1687-1812-2011-66
V. Radu, "The fixed point alternative and the stability of functional equations," Fixed Point Theory, vol. 4, no. 1, pp. 91-96, 2003.
Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive- quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.
J. M. Rassias, "On approximation of approximately linear mappings by linear mappings," Journal of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J. M. Rassias, "Solution of a problem of Ulam," Journal of Approximation Theory, vol. 57, no. 3, pp. 268-273, 1989. DOI: https://doi.org/10.1016/0021-9045(89)90041-5
J. M. Rassias, "Solution of the Ulam stability problem for quartic mappings," Glasnik Matemati?cki. Serija III, vol. 34, no. 2, pp. 243-252, 1999.
J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter $13,149-175$.
J. M. Rassias, "Solution of the Ulam stability problem for cubic mappings," Glasnik Matemati?cki. Serija III, vol. 36, no. 1, pp. 63-72, 2001.
Th. M. Rassias, "On the stability of the linear mapping in Banach spaces," Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297-300, 1978. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246 (2000), 352-378. DOI: https://doi.org/10.1006/jmaa.2000.6788
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251 (2000), 264-284. DOI: https://doi.org/10.1006/jmaa.2000.7046
K. Ravi, M. Arunkumar, and J. M. Rassias, "Ulam stability for the orthogonally general Euler- Lagrange type functional equation," International Journal of Mathematics and Statistics, vol. 3, no. A08, pp. 36-46, 2008.
K. Ravi, J. M. Rassias, M. Arunkumar, and R. Kodandan, "Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation," Journal of Inequalities in Pure and Applied Mathematics, vol. 10, no. 4, article 114, pp. 1-29, 2009.
A. M. Robert, A Course in p-Adic Analysis, vol. 198 of Graduate Texts in Mathematics, Springer, CityplaceNew York, StateNY, country-regionUSA, 2000. DOI: https://doi.org/10.1007/978-1-4757-3254-2
R. Saadati, S. M. Vaezpour, and Y. J. Cho, "A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces"," Journal of Inequalities and Applications, vol. 2009, Article ID 214530, 6 pages, 2009. DOI: https://doi.org/10.1155/2009/214530
V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics, vol. 1 of Series on Soviet and East European Mathematics,World Scientific, River Edge, NJ, USA, 1994. DOI: https://doi.org/10.1142/1581
T. Z. Xu, J. M. Rassias, and W. X. Xu, "Generalized Hyers-Ulam stability of a general mixed additive cubic functional equation in quasi-Banach spaces," Preprint.
T. Z. Xu, J. M. Rassias, and W. X. Xu, “A fixed point approach to the stability of a general mixed additive [71] T.Z. Xu, J.M. Rassias, W.X Xu, Generalized Ulam-Hyers stability of a general mixed AQCQ-functional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), no. 6, 10321047.
T.Z. Xu, J.M Rassias, W.X. Xu, A fixed point approach to the stability of a general mixed AQCQfunctional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010, Art. ID 812545, $24 mathrm{pp}$. DOI: https://doi.org/10.1155/2010/812545
T. Z. Xu, J. M. Rassias, and W. X. Xu, "A generalized mixed quadratic-quartic functional equation,"Bulletin of the Malaysian Mathematical Sciences Society. to appear.
S. M. Ulam, A Collection of Mathematical Problems, vol. 8 of Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, placeCityLondon, country-regionUK, 1960.cubic functional equation in quasi fuzzy normed spaces," International Journal of Physical Sciences. to appear.
T. Z. Xu, J. M. Rassias, and W. X. Xu, "Intuitionistic fuzzy stability of a general mixed additive-cubic equation," Journal of Mathematical Physics, vol. 51, no. 6, 21 pages, 2010. DOI: https://doi.org/10.1063/1.3431968
- NA
Similar Articles
- John M. Rassias, M. Arunkumar , E. Sathya, N. Mahesh Kumar, Generalized Ulam - Hyers stability of on (AQQ): Additive-quadratic-Quartic functional equation , Malaya Journal of Matematik: Vol. 5 No. 01 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.