Stability of 2-variable additive-quadratic-cubic-quartic functional equation using fixed point method

Downloads

DOI:

https://doi.org/10.26637/mjm502/004

Abstract

In this paper, the authors proved the generalized Ulam-Hyers stability of 2-variable Additive-QuadraticCubic-Quartic functional equation
$$
\begin{aligned}
&f(x+2 y, u+2 v)+f(x-2 y, u-2 v)\\= & 4 f(x+y, u+v)-4 f(x-y, u-v)-6 f(x, u)+f(2 y, 2 v) \\
& +f(-2 y,-2 v)-4 f(y, v)-4 f(-y,-v)
\end{aligned}
$$
using fixed point method.

Keywords:

Additive-quadratic-cubic-quartic functional equations, generalized Ulam-Hyers stability, Banach space, fixed point

Mathematics Subject Classification:

39B52, 32B72, 32B82
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai, Tamil Nadu, India - 606 603.
  • S. Karthikeyan Department of Mathematics, R.M.K. Engineering College, Kavarapettai, Tamil Nadu, India - 601 206.
  • S. Hemalatha Department of Mathematics, Annai Veilankanni’s College of Arts and Science, Chennai, Tamil Nadu, India - 600 015.
  • Pages: 241-264
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

J. Aczel, J. Dhombres, Functional equations in several variables, Cambridge University, Press, Cambridge, 1989. DOI: https://doi.org/10.1017/CBO9781139086578

T. Aoki, On the stability of the linear transformation in Banach spaces, J. of the Mathematical Society of Japan, vol. 2, pp. 64-66, 1950. DOI: https://doi.org/10.2969/jmsj/00210064

M. Arunkumar, S. Karthikeyan, Solution and stability of n-dimensional mixed Type additive and quadratic functional equation, Far East J. of Applied Mathematics, Volume 54, Number 1, 2011, $47-64$.

M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ- mixed type functional equation with counter examples,Far East J. of Applied Mathematics, Volume 71, No. 2, (2012), 279305.

M. Arunkumar, Perturbation of n-Dimensional AQ - mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International J. of Advanced Mathematical Sciences (IJAMS), Vol. 2 , 2014, 34-56. DOI: https://doi.org/10.14419/ijams.v2i1.1499

M. Arunkumar, S. Hema Latha and E. Sathya , 2 - Variable AQCQ - Functional equation, International J. of Advanced Mathematical Sciences (IJAMS), Vol. 2 , 2014, 34-56. DOI: https://doi.org/10.14419/ijams.v3i1.4401

L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), no. 1, Article 4, 7 pp. (electronic).

L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, 2008, Article ID 749392, (2008), 15 pages. DOI: https://doi.org/10.1155/2008/749392

L.Cădariu V. Radu, A generalized point method for the stability of Cauchy functional equation, Functional Equations in Mathematical Analysis, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications, 52, 2011. DOI: https://doi.org/10.1007/978-1-4614-0055-4_3

L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, in Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz.

S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ Hamburg., 62 (1992), 59-64. DOI: https://doi.org/10.1007/BF02941618

J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bulletin of the American Mathematical Society, vol. 74, 1968, 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications, vol. 184, no. 3, 1994, 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211

M. Eshaghi Gordji and H. Khodaie, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, arxiv: 0812. 2939v1 Math FA, 15 Dec 2008. DOI: https://doi.org/10.1155/2009/417473

M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions,Abstr Appl Anal, 2008, 17 (Article ID 801904) . DOI: https://doi.org/10.1155/2008/801904

M. Eshaghi Gordji, N.Ghobadipour, J. M. Rassias, Fuzzy stability of additive-quadratic functional Equations, arXiv:0903.0842v1 [math.FA] 4 Mar 2009.

M. Eshaghi Gordji, M. Bavand Savadkouhi and Choonkil Park, Quadratic-Quartic Functional Equations in RN-Spaces, J. of Inequalities and Applications, Vol. 2009, Article ID 868423, 14 pages, doi:10.1155/2009/868423. DOI: https://doi.org/10.1155/2009/868423

M. Eshaghi Gordji, Stability of an additive-quadratic functional equation of two variables in F-spaces,J. Nonlinear Sci Appl. 2, (2009) , 251-259. DOI: https://doi.org/10.22436/jnsa.002.04.07

M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal TMA. 71, 5629-5643 (2009). doi:10.1016/j.na.2009.04.052. DOI: https://doi.org/10.1016/j.na.2009.04.052

M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghri, Stability of an additive-cubic-quartic functional equation,Adv Differ Equ, 2009, 20 (2009). Article ID 395693 DOI: https://doi.org/10.1155/2009/395693

M. Eshaghi Gordji, S. Kaboli Gharetapeh, JM. Rassias and S. Zolfaghari, Solution and stability of a mixed type additive, quadratic and cubic functional equation, Adv Differ Equ,2009, 17. (Article ID 826130). DOI: https://doi.org/10.1155/2009/826130

M. Eshaghi Gordji and M. B. Savadkouhi, Stability of a mixed type cubic-quartic functional equation in non-Archimedean spaces, Applied Mathematics Letters, vol. 23, no. 10, pp. 1198-1202, 2010. DOI: https://doi.org/10.1016/j.aml.2010.05.011

M. Eshaghi Gordji, H. Khodaei and J.M. Rassias, Fixed point methods for the stability of general quadratic functional equation,Fixed Point Theory, 12, no. 1, (2011), 71-82. DOI: https://doi.org/10.1155/2011/454093

D. H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222-224, 1941. DOI: https://doi.org/10.1073/pnas.27.4.222

D. H. Hyers and Th. M. Rassias, Approximate homomrophism, Aequationes Math., 44 (1992), 125-153. DOI: https://doi.org/10.1007/BF01830975

D. H. Hyers, G. Isac and Th. M. Rassias, Stability of functional equations in several variables, Birkhauser Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9

D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptotically of Hyers Ulam stability of mappings, Proc. Amer. Math. Soc., 126 (1998), 425-430. DOI: https://doi.org/10.1090/S0002-9939-98-04060-X

Sun Sook Jin and Yang-Hi Lee, A Fixed Point Approach to the Stability of the Cauchy Additive and Quadratic Type Functional Equation, J. of Applied Mathematics, doi:10.1155/2011/817079, 16 pages. DOI: https://doi.org/10.1155/2011/817079

Sun Sook Jin and Yang Hi Lee, Fuzzy Stability of a Quadratic-Additive Functional Equation, International J. of Mathematics and Mathematical Sciences, doi:10.1155/2011/504802, 16 pages DOI: https://doi.org/10.1155/2011/504802

K.W. Jun and H.M. Kim, On the Hyers-Ulam-Rassias stability of a generalized quadratic and additive type functional equation,Bull. Korean Math. Soc. 42 (2005), 133-148. DOI: https://doi.org/10.4134/BKMS.2005.42.1.133

K.W. Jun and H.M. Kim, Ulam stability problem for a mixed type of cubic and additive functional equation, Bull Belg Math Soc simon Stevin. 13, 271-285 (2006). DOI: https://doi.org/10.36045/bbms/1148059462

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8

H.M. Kim, On the stability problem for a mixed type of quartic and quadratic functional equation,J. of Mathematical Analysis and Applications 324, 358-372 (2006). DOI: https://doi.org/10.1016/j.jmaa.2005.11.053

D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 567-572, 2008. DOI: https://doi.org/10.1016/j.jmaa.2008.01.100

A. Najati and G. Z. Eskandani, Stability of a mixed additive and cubic functional equation in quasiBanach spaces, J. of Mathematical Analysis and Applications, vol. 342, no. 2, pp. 1318-1331, 2008. DOI: https://doi.org/10.1016/j.jmaa.2007.12.039

A. Najati and M.B. Moghimi, On the stability of a quadratic and additive functional equation, J. Math. Anal. Appl. 337 (2008), 399-415. DOI: https://doi.org/10.1016/j.jmaa.2007.03.104

C. Park, Fixed points and the stability of an AQCQ-functional equation in non-archimedean normed spaces, Abstract and Applied Analysis, vol. 2010, Article ID 849543, 15 pages, 2010. DOI: https://doi.org/10.1155/2010/849543

C. Park, Orthogonal Stability of an Additive-Quadratic Functional Equation, Fixed Point Theory and Applications, 2011 2011:66. DOI: https://doi.org/10.1186/1687-1812-2011-66

V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, vol. 4, no. 1, pp. 91-96, 2003.

J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. of Functional Analysis, vol. 46, no. 1, pp. 126-130, 1982. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

J. M. Rassias, Solution of a problem of Ulam, J. of Approximation Theory, vol. 57, no. 3, pp. 268-273, 1989. DOI: https://doi.org/10.1016/0021-9045(89)90041-5

J. M. Rassias, Solution of the Ulam stability problem for quartic mappings,Glasnik Matematicki. Serija III, vol. 34, no. 2, pp. 243-252, 1999.

J.M. Rassias, K.Ravi, M.Arunkumar and B.V.Senthil Kumar, Ulam Stability of Mixed type Cubic and Additive functional equation, Functional Ulam Notions (F.U.N) Nova Science Publishers, 2010, Chapter 13, $149-175$.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces,Proceedings of the American Mathematical Society, vol. 72 (1978), no. 2, pp. 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378. DOI: https://doi.org/10.1006/jmaa.2000.6788

Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251(2000), 264-284. DOI: https://doi.org/10.1006/jmaa.2000.7046

K. Ravi, M. Arunkumar, and J. M. Rassias, Ulam stability for the orthogonally general Euler- Lagrange type functional equation, International Journal of Mathematics and Statistics, vol. 3, no. A08, pp. 36-46, 2008.

K. Ravi, J. M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, Journal of Inequalities in Pure and Applied Mathematics, vol. 10 (2009), no. 4 , article 114, 1-29.

S. M. Ulam, A Collection of Mathematical Problems, vol. 8 of Interscience Tracts in Pure and Applied Mathematics, Interscience Publishers, place City London, country-regionUK, 1960.

T. Z. Xu, J. M. Rassias and W. X. Xu, Intuitionistic fuzzy stability of a general mixed additive-cubic equation,Journal of Mathematical Physics, vol. 51 (2010), no. 6, 21 pages. DOI: https://doi.org/10.1063/1.3431968

T.Z. Xu, J.M. Rassias and W.X. Xu, Generalized Ulam-Hyers stability of a general mixed AQCQfunctional equation in multi-Banach spaces: a fixed point approach, Eur. J. Pure Appl. Math. 3 (2010), no. 6, 1032- 1047

T.Z. Xu, J.M Rassias and W.X. Xu, A fixed point approach to the stability of a general mixed AQCQfunctional equation in non-Archimedean normed spaces, Discrete Dyn. Nat. Soc. 2010, Art. ID 812545, 24 pages. DOI: https://doi.org/10.1155/2010/812545

  • NA

Metrics

Metrics Loading ...

Published

01-04-2017

How to Cite

M. Arunkumar, S. Karthikeyan, and S. Hemalatha. “Stability of 2-Variable Additive-Quadratic-Cubic-Quartic Functional Equation Using Fixed Point Method”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 241-64, doi:10.26637/mjm502/004.