\(a_i \) Type \( n\) - variable multi \(n\)-dimensional additive functional equation

Downloads

DOI:

https://doi.org/10.26637/mjm502/006

Abstract

In this paper, the authors investigated the general solution and generalized Ulam - Hyers stability of \(a_i\) type \(n\)- variable multi \(n\) - dimensional additive functional equation
$$
\begin{aligned}
&2 h\left(\sum_{i=1}^n a_i x_{1 i}\right.  \left., \sum_{i=1}^n a_i x_{2 i}, \ldots \ldots, \sum_{i=1}^n a_i x_{n i}\right) \\
= & \left(\sum_{i=1}^n a_i\right) h\left(\sum_{i=1}^n x_{1 i}, \sum_{i=1}^n x_{2 i}, \ldots \ldots, \sum_{i=1}^n x_{n i}\right) \\
& +\left(a_1-\sum_{i=2}^n a_i\right) h\left(x_{11}-\sum_{i=2}^n x_{1 i}, x_{21}-\sum_{i=2}^n x_{2 i}, \ldots \ldots, x_{n 1}-\sum_{i=2}^n x_{n i}\right)
\end{aligned}
$$
where \(a_i(i=1,2, \ldots n)\) are different integers greater than 1, using two different technique.

Keywords:

Additive functional equations, Ulam - Hyers stability, Ulam - Hyers - Rassias stability, Ulam - Gavruta - Rassias stability, Ulam - JRassias stability

Mathematics Subject Classification:

39B52, 32B72, 32B82
  • Matina J. Rassias Department of Statistical Science , University College London, 1-19 Torrington Place, #140, London, WC1E 7HB, UK.
  • M. Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India.
  • E. Sathya Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, Tamil Nadu, India.
  • Pages: 278-292
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578

M. Acikgöz, A review on 2-normed structures, Int. J. Math. Anal., 1, No. 4 (2007), 187-191.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064

M. Arunkumar, Solution and stability of Arun-additive functional equations, International Journal Mathematical Sciences and Engineering Applications, Vol 4, No. 3, August 2010, 33-46.

M. Arunkumar, G. Ganapathy, S. Murthy, S. Karthikeyan, Stability of the generalized Arun-additive functional equation in Instutionistic fuzzy normed spaces, International Journal Mathematical Sciences and Engineering Applications Vol.4, No. V, December 2010, 135-146.

M. Arunkumar, C. Leela Sabari, Solution and stability of a functional equation originating from a chemical equation, International Journal Mathematical Sciences and Engineering Applications Vol. 5 No. II (March, 2011), 1-8.

M. Arunkumar, V. Arasu, N. Balaji, Fuzzy Stability of a 2- Variable Quadratic Functional Equation, International Journal Mathematical Sciences and Engineering Applications, Vol. 5 No. IV (July, 2011), $331-341$.

M. Arunkumar, S. Hema latha, C. Devi Shaymala Mary, Functional equation originating from arithmetic Mean of consecutive terms of an arithmetic Progression are stable in banach space: Direct and fixed point method, JP Journal of Mathematical Sciences, Volume 3, Issue 1, 2012, Pages 27-43.

M. Arunkumar, G. Vijayanandhraj, S. Karthikeyan, Solution and Stability of a Functional Equation Originating From $n$ Consecutive Terms of an Arithmetic Progression, Universal Journal of Mathematics and Mathematical Sciences, Volume 2, No. 2, (2012), 161-171.

M. Arunkumar, S. Hemalatha, 2-Variable AQ-Functional Equation, International Journal of Physical, Chemical and Mathematical Sciences (IJPCMS) - ISSN 2278 - 683X , Vol. 1; No. 2, (2012), 99 - 126.

M. Arunkumar, Matina J. Rassias, Yanhui Zhang, Ulam - Hyers stability of a 2-variable AC - mixed type functional equation: direct and fixed point methods, Journal of Modern Mathematics Frontier (JMMF), 1 (3), $2012,10-26$.

M. Arunkumar, N. Maheshkumar, Ulam - Hyers, Ulam - TRassias, Ulam - JRassias stabilities of an additive functional equation in Generalized 2- Normed Spaces: Direct and Fixed Point Approach, Global Journal of Mathematical Sciences: Theory and Practical, Volume 5, Number 2 (2013), pp. 131-144.

M. Arunkumar, Functional equation originating from sum of First natural numbers is stable in Cone Banach Spaces: Direct and Fixed Point Methods, International Journal of Information Science and Intelligent System (IJISIS ISSN:2307-9142) , Vol. 2 No. 4 (2013), 89 - 104.

M. Arunkumar, Perturbation of $n$ Dimensional AQ - mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), 2014, 34-56. DOI: https://doi.org/10.14419/ijams.v2i1.1499

M. Arunkumar, C. Vijayalakshmi, G. Vijayanandhraj, 2 - Variable Associative functional equation, Proceedings of the International Conference on Mathematical Methods and Computation, February 2014. DOI: https://doi.org/10.14419/ijams.v2i1.1498

J.H. Bae and W.G. Park , A functional equation orginating from quadratic forms, J. Math. Anal. Appl. 326 (2007), 1142-1148. DOI: https://doi.org/10.1016/j.jmaa.2006.03.023

D.G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc., 57, (1951), 223- 237. DOI: https://doi.org/10.1090/S0002-9904-1951-09511-7

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875

D.O. Lee, Hyers-Ulam stability of an addtiive type functional equation, J. Appl. Math. and Computing, 13 (2003) no.1-2, 471-477.

P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211

D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A.,27 (1941) $222-224$. DOI: https://doi.org/10.1073/pnas.27.4.222

D.H. Hyers, G. Isac, Th.M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998. DOI: https://doi.org/10.1007/978-1-4612-1790-9

S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8

S. Murthy, M. Arunkumar, G. Ganapathy, Fuzzy Stability Of A 3-D Additive Functional Equation: Hyers Direct And Fixed Point Method, Proceedings of National conference on Recent Trends in Mathematics and Computing (NCRTMC-2013), 69-79, ISBN 978-93-82338-68-0.

B.Margoils and J.B.Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 12674 (1968), 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0

W.G.Park, J.H.Bae, On the solution of a multi-additive functional equation and its stability, J. Appl. Math. and Computing, Vol. 22 No. 1 - 2, (2006), 517 - 522

V.Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca, Vol. IV, 2003, in press.

Matina J. Rassias, M. Arunkumar, S. Ramamoorthi, Stability of the Leibniz additive-quadratic functional equation in Quasi-Beta normed space: Direct and fixed point methods, Journal Of Concrete And Applicable Mathematics (JCAAM), Vol. 14 No. 1-2, (2014), 22 - 46.

J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, $46,(1982) 126-130$. DOI: https://doi.org/10.1016/0022-1236(82)90048-9

Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297-300. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1

K. Ravi, M. Arunkumar, On a n-dimensional additive Functional Equation with fixed point Alternative, Proceedings of ICMS 2007,314-330.

K.Ravi and M.Arunkumar, Stability of a 3- variable Quadratic Functional Equation, Journal of Quality Measurement and Analysis, July 4 (1), 2008, 97-107.

K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 3647.

S.M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, New York, 1964.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2017

How to Cite

Matina J. Rassias, M. Arunkumar, and E. Sathya. “\(a_i \) Type \( n\) - Variable Multi \(n\)-Dimensional Additive Functional Equation”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 278-92, doi:10.26637/mjm502/006.