Ulam-Hyers stability of quadratic reciprocal functional equation in intuitionistic random normed spaces: Various methods
Downloads
DOI:
https://doi.org/10.26637/mjm502/007Abstract
In this paper, the authors investigated the intuitionistic random stability of a quadratic reciprocal functional equation
$$
f(x+2 y)+f(2 x+y)=\frac{f(x) f(y)[5 f(x)+5 f(y)+8 \sqrt{f(x) f(y)}]}{[2 f(x)+2 f(y)+5 \sqrt{f(x)+f(y)}]^2}
$$
using direct and fixed point methods.
Keywords:
Quadratic reciprocal functional equation, generalized Ulam-Hyers stability, intuitionistic random normed space, fixed pointMathematics Subject Classification:
39B52, 34K36, 46S50, 47S50- Pages: 293-304
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
Abasalt Bodaghi and Sang Og Kim, Approximation on the quadratic reciprocal functional equation, Journal of Function Spaces, http: / / dx.doi.org/10.1155/2014/532463.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ, Press, 1989. DOI: https://doi.org/10.1017/CBO9781139086578
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), $64-66$. DOI: https://doi.org/10.2969/jmsj/00210064
M. Arunkumar and S. Karthikeyan, Solution and Intuitionistic Fuzzy Stability of n-Dimensional Quadratic Functional Equation: Direct and Fixed Point Methods, Int. J. of Advanced Mathematical Sciences, 2 (1) (2014), 21-33. DOI: https://doi.org/10.14419/ijams.v2i1.1498
M. Arunkumar and S. Karthikeyan, Solution and stability of a reciprocal functional equaton originating from $n$-consecutive terms of a harmonic progression: Direct and fixed Point methods, Int. J. of Information Science and Intelligent System, 3(1) (2014), 151-168.
M. Arunkumar, S. Karthikeyan and S. Ramamoorthi, Generalized Ulam-Hyers stability of ndimensional cubic functional equation in FNS and RNS: various methods, Middle-East J of Scientific Research, 24 (S2) (2016), 386-404.
M. Arunkumar, John M. Rassias and S. Karthikeyan, Stability of a Leibniz type additive and quadratic functional equation in intuitionistic fuzzy normed spaces, Advances in theoretical and applied mathematics, 11 (2016), No.2, 145-169.
K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986), 87-96. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3
T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003), 687-705.
T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems, 151 (2005) 513-547. DOI: https://doi.org/10.1016/j.fss.2004.05.004
L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure Appl. Math., 4 (2003), no. 1, Article 4, 7 pp. (electronic).
L. Cădariu and V. Radu, Fixed point methods for the generalized stability of functional equations in a single variable, Fixed Point Theory and Applications, 2008, Article ID 749392, (2008), 15 pages. DOI: https://doi.org/10.1155/2008/749392
L.Cădariu V. Radu, A generalized point method for the stability of Cauchy functional equation, In Functional Equations in Mathematical Analysis, Th. M. Rassias, J. Brzdek (Eds.), Series Springer Optimization and Its Applications, 52, 2011. DOI: https://doi.org/10.1007/978-1-4614-0055-4_3
L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, in Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz.
S.S. Chang, Y. Cho, Y. Kang, Nonlinear Operator Theory in Probabilistic Metric Spaces, Nova Science Publishers Inc., New York (2001)
S.S. Chang, J.M. Rassias, R. Saadati, The stability of the cubic functional equation in intuitionistic random normed spaces, Appl Math Mech. 31, 2126 (2010). doi:10.1007/s10483-010-0103-6. DOI: https://doi.org/10.1007/s10483-010-0103-6
S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc., 86 (1994), 429-436.
S.Czerwik, On the stability of the quadratic mappings in normed spaces, Abh.Math.Sem.Univ Hamburg., $62(1992), 59-64$. DOI: https://doi.org/10.1007/BF02941618
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. DOI: https://doi.org/10.1142/4875
G. Deschrijver and E.E. Kerre, On the relationship between some extensions of fuzzy set theory, Fuzzy Sets and Systems, 23 (2003), 227-235. DOI: https://doi.org/10.1016/S0165-0114(02)00127-6
P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
O. Hadžic, E. Pap, Fixed Point Theory in PM-Spaces, Kluwer Academic, Dordrecht (2001).
K. Hensel, Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahres Deutsch Math Verein. , 6 (1897), 83-88.
D.H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A., 27 (1941) 222224. DOI: https://doi.org/10.1073/pnas.27.4.222
S.M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009. DOI: https://doi.org/10.1007/978-0-387-89492-8
A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets and Systems, 12 (1984), 143-154. DOI: https://doi.org/10.1016/0165-0114(84)90034-4
I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.
S. Kutukcu, A. Tuna, A.T. Yakut, Generalized contraction mapping principle in intuitionistic Menger spaces and application to differential equations, Appl Math Mech., 28 (2007), 799-809. doi:10.1007/s10483-007-0610-z. DOI: https://doi.org/10.1007/s10483-007-0610-z
B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., Vol.126 (1968), no.74, 305-309. DOI: https://doi.org/10.1090/S0002-9904-1968-11933-0
D. Miheţ, V. Radu On the stability of the additive Cauchy functional equation in random normed spaces,J Math Anal Appl., 343 (2008), 567-572. DOI: https://doi.org/10.1016/j.jmaa.2008.01.100
A.K. Mirmostafaee and M.S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Vol. 159 (2008), no.6, 720-729. DOI: https://doi.org/10.1016/j.fss.2007.09.016
C. Park, Madjid Eshaghi Gordji, M. Ghanifard and H. Khodaei, Intuitionistic random almost additivequadratic mappings, Advances in Difference Equations, 2012, 2012:152. DOI: https://doi.org/10.1186/1687-1847-2012-152
J.H. Park, Intuitionistic fuzzy metric spaces, Chaos, Solitons and Fractals, 22 (2004),1039-1046. DOI: https://doi.org/10.1016/j.chaos.2004.02.051
J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. $46,(1982) 126-130$. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J.M. Rassias, R. Saadati, G. Sadeghi and J. Vahidi, On nonlinear stability in various random normed spaces, J. of inequalities and applications, 2011, 2011:62. DOI: https://doi.org/10.1186/1029-242X-2011-62
Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), $297-300$. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
K. Ravi, M. Arunkumar and J.M. Rassias, On the Ulam stability for the orthogonally general EulerLagrange type functional equation, Int. J. of Mathematical Sciences, Autumn 2008 Vol.3, No. 08, 36-47.
K. Ravi, J.M. Rassias, Abasalt Bodaghi and B.V. Senthil Kumar, Intuitionistic Fuzzy Stability of a Reciprocal-Quadratic Functional Equation, Int. J. of Applied Science and Mathematics, Volume 1, No. 1, 2014, 9-14.
R. Saadati and J.H. Park, On the intuitionistic fuzzy topological spaces, Chaos, Solitons and Fractals, 27 (2006), 331-344. DOI: https://doi.org/10.1016/j.chaos.2005.03.019
B. Schweizer and A. Sklar, Probabilistic Metric Spaces, Elsevier, North Holand, New York, 1983.
A.N. Šerstnev, On the notion of a random normed space, Dokl Akad Nauk SSSR, 149 (1963), 280283.
S.Shakeri, Intuitionstic fuzzy stability of Jensen type mapping, J. Nonlinear Sci. Appli. Vol.2 No. 2 (2009), 105-112. DOI: https://doi.org/10.22436/jnsa.002.02.05
S.M. Ulam, Problems in Modern Mathematics, Science Editions,Wiley, New York, 1964 (Chapter VI, Some Questions in Analysis: 1, Stability).
- NA
Similar Articles
- A. M. A. El-Sayed , M. SH. Mohamed, K. M. O. Msaik, On two boundary-value problems of functional integro-differential equations with nonlocal conditions , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.