On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions

Downloads

DOI:

https://doi.org/10.26637/mjm502/008

Abstract

In this paper, we introduce and investigate a new subclass of the function class \(\Sigma\) of bi-univalent functions defined in the open unit disk. Furthermore, we find estimates on the coefficients \(\left|a_2\right|\) and \(\left|a_3\right|\) for functions in this new subclass.

Keywords:

Bi-univalent functions, Sakaguchi functions, coefficient bounds, subordination

Mathematics Subject Classification:

30C45, 30C50
  • Pages: 305-309
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

Ş. Altınkaya and S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pages. DOI: https://doi.org/10.1155/2014/867871

Ş. Altınkaya and S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics, 6(2)(2015), 180-185.

Ş. Altınkaya and S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, Journal of Function Spaces, Article ID 145242, (2015), 5 pages. DOI: https://doi.org/10.1155/2015/145242

D.A. Brannan and J.G. Clunie, Aspects of comtemporary complex analysis, (Proceedings of the NATO Advanced Study Instute Held at University of Durham:July 1-20, 1979), New York: Academic Press, (1980).

P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 259 (1983).

B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24(2011), 1569-1573. DOI: https://doi.org/10.1016/j.aml.2011.03.048

S.G. Hamidi and J.M. Jahangiri,Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352(1)(2014), 17-20. DOI: https://doi.org/10.1016/j.crma.2013.11.005

J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., Article ID 190560, (2013), 4 pages. DOI: https://doi.org/10.1155/2013/190560

B. Srutha Keerthi and Bhuvaneswari Raja, Coefficient inequality for certain new subclasses of analytic biunivalent functions, Theoretical Mathematics and Applications, 3(1)(2013), 1-10.

M. Lewin, On a coefficient problem for bi-univalent functions, Proceeding of the American Mathematical Society, 18(1967), 63-68. DOI: https://doi.org/10.1090/S0002-9939-1967-0206255-1

N. Magesh and J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum, 8(27)(2013), 1337-1344. DOI: https://doi.org/10.12988/imf.2013.3595

E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32(1969), 100-112. DOI: https://doi.org/10.1007/BF00247676

K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1)(1959), 72-75. DOI: https://doi.org/10.2969/jmsj/01110072

H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23(2010), 1188-1192. DOI: https://doi.org/10.1016/j.aml.2010.05.009

Q.-H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters, 25(2012), 990-994. DOI: https://doi.org/10.1016/j.aml.2011.11.013

  • NA

Metrics

Metrics Loading ...

Published

01-04-2017

How to Cite

Şahsene Altınkaya, and Sibel Yalcin. “On a New Subclass of Bi-Univalent Functions of Sakaguchi Type Satisfying Subordinate Conditions”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 305-9, doi:10.26637/mjm502/008.