On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions
Downloads
DOI:
https://doi.org/10.26637/mjm502/008Abstract
In this paper, we introduce and investigate a new subclass of the function class \(\Sigma\) of bi-univalent functions defined in the open unit disk. Furthermore, we find estimates on the coefficients \(\left|a_2\right|\) and \(\left|a_3\right|\) for functions in this new subclass.
Keywords:
Bi-univalent functions, Sakaguchi functions, coefficient bounds, subordinationMathematics Subject Classification:
30C45, 30C50- Pages: 305-309
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
Ş. Altınkaya and S. Yalçın, Initial coefficient bounds for a general class of bi-univalent functions, International Journal of Analysis, Article ID 867871, (2014), 4 pages. DOI: https://doi.org/10.1155/2014/867871
Ş. Altınkaya and S. Yalçın, Coefficient bounds for a subclass of bi-univalent functions, TWMS Journal of Pure and Applied Mathematics, 6(2)(2015), 180-185.
Ş. Altınkaya and S. Yalçın, Coefficient estimates for two new subclasses of bi-univalent functions with respect to symmetric points, Journal of Function Spaces, Article ID 145242, (2015), 5 pages. DOI: https://doi.org/10.1155/2015/145242
D.A. Brannan and J.G. Clunie, Aspects of comtemporary complex analysis, (Proceedings of the NATO Advanced Study Instute Held at University of Durham:July 1-20, 1979), New York: Academic Press, (1980).
P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, NY, USA, 259 (1983).
B.A. Frasin and M.K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters, 24(2011), 1569-1573. DOI: https://doi.org/10.1016/j.aml.2011.03.048
S.G. Hamidi and J.M. Jahangiri,Faber polynomial coefficient estimates for analytic bi-close-to-convex functions, C. R. Acad. Sci. Paris, Ser. I 352(1)(2014), 17-20. DOI: https://doi.org/10.1016/j.crma.2013.11.005
J.M. Jahangiri and S.G. Hamidi, Coefficient estimates for certain classes of bi-univalent functions, Int. J. Math. Math. Sci., Article ID 190560, (2013), 4 pages. DOI: https://doi.org/10.1155/2013/190560
B. Srutha Keerthi and Bhuvaneswari Raja, Coefficient inequality for certain new subclasses of analytic biunivalent functions, Theoretical Mathematics and Applications, 3(1)(2013), 1-10.
M. Lewin, On a coefficient problem for bi-univalent functions, Proceeding of the American Mathematical Society, 18(1967), 63-68. DOI: https://doi.org/10.1090/S0002-9939-1967-0206255-1
N. Magesh and J. Yamini, Coefficient bounds for a certain subclass of bi-univalent functions, International Mathematical Forum, 8(27)(2013), 1337-1344. DOI: https://doi.org/10.12988/imf.2013.3595
E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Archive for Rational Mechanics and Analysis, 32(1969), 100-112. DOI: https://doi.org/10.1007/BF00247676
K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1)(1959), 72-75. DOI: https://doi.org/10.2969/jmsj/01110072
H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Applied Mathematics Letters, 23(2010), 1188-1192. DOI: https://doi.org/10.1016/j.aml.2010.05.009
Q.-H. Xu, Y.C. Gui and H.M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Applied Mathematics Letters, 25(2012), 990-994. DOI: https://doi.org/10.1016/j.aml.2011.11.013
- NA
Similar Articles
- Matina J. Rassias, M. Arunkumar, E. Sathya , \(a_i \) Type \( n\) - variable multi \(n\)-dimensional additive functional equation , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.