Initial value problems for fractional differential equations involving Riemann-Liouville derivative

Downloads

DOI:

https://doi.org/10.26637/mjm502/012

Abstract

Existence results are obtained for fractional differential equations with $C_p$ continuity of functions. Monotone method for nonlinear initial value problem is developed by introducing the notion of coupled lower and upper solutions. As an application of the method existence and uniqueness results are obtained.

Keywords:

Fractional derivative, initial value problem, coupled lower and upper solutions, existence and uniqueness

Mathematics Subject Classification:

Mathematics
  • J.A. Nanware Department of Mathematics, Shrikrishna Mahavidyalaya, Gunjoti–413 606, Maharashtra, India.
  • N.B. Jadhav Department of Mathematics, Yashwantrao Chavan Mahavidyalaya, Tuljapur– 413 605, India.
  • D.B. Dhaigude Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431 004, Maharashtra, India.
  • Pages: 337-345
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

Z.Denton, A.S.Vatsala, Monotone Iterative Technique for Finite Systems of Nonlinear Riemann-Liouville Fractional Differential Equations ,Opus. Math.,31(3)(2011), 327-339. DOI: https://doi.org/10.7494/OpMath.2011.31.3.327

J.Vasundhara Devi, F.A.McRae, Z. Drici, Variational Lyapunov Method for Fractional Differential Equations, Comp. Math. Appl., 64(10)(2012), 2982-2989, doi:10.1016/j.camwa.2012.01.070 DOI: https://doi.org/10.1016/j.camwa.2012.01.070

D.B.Dhaigude,J.A.Nanware and V.R.Nikam,Monotone Technique for System of Caputo Fractional Differential Equations with Periodic Boundary Conditions , Dyn.Conti.Disc.Impul. Sys., 19(5a)(2012), 575584.

A.A. Kilbas, H.M.Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Mathematical Studies Vol.204. Elsevier(North-Holland) Sciences Publishers, Amsterdam,2006.

G.S.Ladde, V.Lakshmikantham, A.S.Vatsala, Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman Advanced Publishing Program,London, 1985.

V.Lakshmikantham, A.S.Vatsala, Theory of Fractional Differential Equations and Applications, Commun.Appl.Anal., 11 (2007), 395-402.

V.Lakshmikantham, A.S.Vatsala, Basic Theory of Fractional Differential Equations and Applications, Nonl. Anal., 69(8) (2008), 2677-2682. DOI: https://doi.org/10.1016/j.na.2007.08.042

V.Lakshmikantham, A.S.Vatsala, General Uniqueness and Monotone Iterative Technique for Fractional Differential Equations, Appl. Math. Lett. 21(8) (2008), 828-834. DOI: https://doi.org/10.1016/j.aml.2007.09.006

V.Lakshmikantham, S.Leela, J.V.Devi, Theory of Fractional Dynamic Systems, Cambridge Scientific Publishers, Cambridge,UK ,2009.

F.A.McRae, Monotone Iterative Technique and Existence Results for Fractional Differential Equations, Nonl. Anal. 71(12)(2009), 6093-6096. DOI: https://doi.org/10.1016/j.na.2009.05.074

J.A.Nanware, D.B.Dhaigude, Monotone Technique for Finite System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti., Disc. Impul. Sys., 22(1)(2015),13-23.

J.A.Nanware, m-point Boundary Value Problem for Caputo Fractional Differential Equations, IOSRJEN, 6(2)(2016), 31-37.

J.A.Nanware, Monotone Method In Fractional Differential Equations and Applications, Dr.Babsaheb Ambedkar Marathwada University, Ph.D Thesis, 2013.

J.A.Nanware, Existence and Uniqueness of solution of Fractional Differential Equations Via Monotone Method, Bull. Marathwada Math. Soc., 14(1)(2013), 39-55.

J.A.Nanware, Existence Results for Caputo Fractional Boundary Value Problems Using Fixed Point Theorems, Int. Jour. Univ. Sci.Tech., 2(1)(2016), 14-23.

J.A.Nanware, D.B.Dhaigude, Existence and Uniqueness of solution of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Int. Jour. Nonl. Sci., 14(4)(2012), 410-415.

J.A.Nanware, D.B.Dhaigude, Monotone Technique for Finite System of Caputo Fractional Differential Equations with Periodic Boundary Conditions, Dyn. Conti., Disc. Impul. Sys., 22(1)(2015), 13-23.

J.A.Nanware, D.B.Dhaigude, Monotone Iterative Scheme for System of Riemann-Liouville Fractional Differential Equations with Integral Boundary Conditions, Math.Modelling Scien.Computation, SpringerVerlag, 283(2012),395-402. DOI: https://doi.org/10.1007/978-3-642-28926-2_43

J.A.Nanware, N.B.Jadhav, D.B.Dhaigude, Monotone Iterative Technique for Finite System of RiemannLiouville Fractional Differential Equations with Integral Boundary Conditions, Int. Conf. Mathematical Sciences 2014, Elsevier, (2014), 235-238.

J.A.Nanware, D.B.Dhaigude, Existence and Uniqueness of Solution of Differential Equations of Fractional Order with Integral Boundary Conditions, J. Nonl. Sci. Appl., 7(2014), 246-254. DOI: https://doi.org/10.22436/jnsa.007.04.02

J.A.Nanware, D.B.Dhaigude, Boundary Value Problems for Differential Equations of Non-integer Order Involving Caputo Fractional Derivative, Adv. Stu. Contem. Math., 24(3)(2014), 369-376.

J.A.Nanware, D.B.Dhaigude, System of Initial Value Problems for Fractional Differential Equations Involving Riemann-Liouville Sequential Derivative,To appear.

I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

A.S.Yakar, M.E.Koksal, Existence Results for Solutions of Nonlinear Fractional Differential Equations, Abst. Appl. Anal., (2012), Article ID 267108, doi:10.1155/2012/267108. DOI: https://doi.org/10.1155/2012/267108

  • NA

Metrics

PDF views
78
Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 20267.0
|

Published

01-04-2017

How to Cite

J.A. Nanware, N.B. Jadhav, and D.B. Dhaigude. “Initial Value Problems for Fractional Differential Equations Involving Riemann-Liouville Derivative”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 337-45, doi:10.26637/mjm502/012.