Boundary value problems for fractional differential equations and inclusions in Banach spaces
Downloads
DOI:
https://doi.org/10.26637/mjm502/013Abstract
In this paper, we are concerned with the existence of solutions for boundary value problems, first for a class of fractional differential equations and second for a class of fractional differential inclusions. The methods include techniques associated with measure of noncompactness in conjunction with fixed point theorems of Mönch type.
Keywords:
Fractional differential equation, fractional differential inclusion, boundary value problem, measure of noncompactness, fixed pointMathematics Subject Classification:
Mathematics- Pages: 346-366
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
Agarwal, R.P., Benchohra, M., Hamani, S.: Boundary value problems for fractional differential inclusions. Adv. Stud. Contemp. Math. 16 (2008). 181-196. DOI: https://doi.org/10.1515/GMJ.2009.401
Agarwal, R.P., Benchohra, M., Hamani, S., Pinelas, S.: Boundary value problems for differential equations involving Riemann-Liouville fractional derivative on the half line. Dynamics of Continuous, Discrete and Impulsive Systems 18 (2011), 235-244.
Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions. Acta Applicandae Mathematics 109 (2010), 973-1033. DOI: https://doi.org/10.1007/s10440-008-9356-6
Agarwal, R.P., Benchohra, M., Seba, D.: An the application of measure of noncompactness to the existence of solutions for fractional differential equations. Results Math. 55 (2009), 221-230. DOI: https://doi.org/10.1007/s00025-009-0434-5
Agarwal, R.P., Meehan, M., and O'Regan, D.: Fixed Point Theory and Applications. Cambridge Tracts in Mathematics, vol. 141, Cambridge University Press, Cambridge, (2001). DOI: https://doi.org/10.1017/CBO9780511543005
Akhmerov, R.R., Kamenski, M.I., Patapov, A.S., Rodkina, A.E., Sadovski, B.N.: Measure of Noncompactness and Condensing Operators. Translated from the 1986 Russian original by A. Iacop. Operator theory. Advances and Applications, vol. 55, Birhhauser Verlag, Bassel, (1992). DOI: https://doi.org/10.1007/978-3-0348-5727-7
Aubin, J.P., Cellina, A.: Differential Inclusions. Springer-Verlag, Berlin-Heidelberg, New York, (1984). DOI: https://doi.org/10.1007/978-3-642-69512-4
Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser, Boston, (1990).
Bai, Z.: On positive solutions of a nonlocal fractional boundary value problem. Nonlinear Anal. 72 (2010), 916-924. DOI: https://doi.org/10.1016/j.na.2009.07.033
Bai, Z., Lu, H.S.: Positive solution of a boundary value problem of a nonlinear fractional differential equation. J. Math. Anal. Appl. 311 (2005), 495-505. DOI: https://doi.org/10.1016/j.jmaa.2005.02.052
Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Applied Mathematics, vol. 60, Marcel Dekker, New York, (1980).
Banas, J., Sadarangani, K.: On some measure of noncompactness in the space of continuous functions. Nonlinear Anal. 60 (2008), 377-383. DOI: https://doi.org/10.1016/j.na.2006.11.003
Benchohra M., Djebali, S., Hamani, S.: Boundary value problems of differential inclusions with RiemannLiouville fractional derivative. Nonlinear Oscillations 14 (2011), 7-20. DOI: https://doi.org/10.1007/s11072-011-0137-1
Benchohra, M., Graef, J.R., Hamani, S.: Existence results for boundary value problems of nonlinear fractional differential equations with integral conditions. Appl. Anal. 87 (2008), 851-863. DOI: https://doi.org/10.1080/00036810802307579
Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative. Topol. Meth. Nonlinear Anal. 32 (2008), 115-130.
Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order. Diss. Math. Diff. Inclusions. Control and Optimization 28 (2008), 147-164. DOI: https://doi.org/10.7151/dmdico.1099
Benchohra, M., Hamani, S.: Boundary value problems for differential equations with fractional order and nonlocal conditions. Nonlinear Anal. 71 (2009), 2391-2396. DOI: https://doi.org/10.1016/j.na.2009.01.073
Benchohra, M., Henderson, J., Seba, D.: Boundary value problems for fractional differential inclusions in Banach space. Frac. Diff. Cal. 2 (2012), 99-108. DOI: https://doi.org/10.7153/fdc-02-07
Benchohra, M., Henderson, J., Seba, D.: Measure of noncompactness and fractional differential equations in Banach space. Commun. Appl. Anal. 12 (2008), 419-428.
Benchohra, M., Nieto, J.J., Seba, D.: Measure of noncompactness and fractional and hyperbolic partial fractional differential equations in Banach space. Panamer. Math. J. 20 (2010), 27-37.
Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii-Schaefer type. Math. Nachr. 189 (1998), $23-31$ DOI: https://doi.org/10.1002/mana.19981890103
Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, (1977). DOI: https://doi.org/10.1007/BFb0087685
Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin-New York, (1992). DOI: https://doi.org/10.1515/9783110874228
Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. Appl. 204 (1996), 609-625. DOI: https://doi.org/10.1006/jmaa.1996.0456
Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Mathematics and its Applications, vol. 373, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1996). DOI: https://doi.org/10.1007/978-1-4613-1281-9_2
Hamani, S.: Boundary-value problems for Riemman-Liouville differential equations in Banach spaces, Preprint.
Hamani, S., Benchohra, M., Graef, J.R.: Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions. Electron. J. Diff. Equ. 2010, No. 20 (2010), pp. 1-16.
Hamani, S., Henderson, J.: Boundary-value problems for Riemman-Liouville differential inclusions in Banach spaces. Electron. J. Diff. Equ. 2015, No. 233 (2015), pp. 1-10.
Hamani, S., Henderson, J.: Boundary-value problems for fractional differential inclusions and nonlocal conditions in Banach spaces, Preprint
Hamani, S., Henderson, J.: Boundary-value problems for fractional differential equations and nonlocal conditions in Banach spaces, Preprint
Hamani, S., Henderson, J., Nieto, J.J.: A boundary value problem for fractional differential equations with nonlocal conditions in Banach spaces. Fixed Point Theory, In press.
Heinz, H.P.: On the behaviour of measure of noncompactness with respect of differentiation and integration of vector-valued functions. Nonlinear. Anal. 7 (1983), 1351-1371. DOI: https://doi.org/10.1016/0362-546X(83)90006-8
Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta 45 (2006), 765-772. DOI: https://doi.org/10.1007/s00397-005-0043-5
Hu, Sh., Papageorgiou, N.: Handbook of Multivalued Analysis, Theory I. Kluwer, Dordrecht, (1997). DOI: https://doi.org/10.1007/978-1-4615-6359-4
Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation. Electron. J. Qual. Theory Differ. Equ. 2007, No. 3 (2007), 11 pp. DOI: https://doi.org/10.14232/ejqtde.2008.1.3
Kilbas, A.A., Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions. Differential Equations 41 (2005), 84-89. DOI: https://doi.org/10.1007/s10625-005-0137-y
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, (2006).
Lakshmikantham, V., Leela, S.: Nonlinear Differential Equations in Abstract Spaces. International Series in Mathematics: Theory, Methods and Applications, vol. 2, Pergamon Press, Oxford, (1981).
Lasota, A., Opial, Z.: An application of the Kakutani-ky Fan theorem in the theory of ordinary differential equation. Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.
Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York, (1993).
Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order. Int. J. Math. Math. Sci. 2004 (2004), 697-710. DOI: https://doi.org/10.1155/S0161171204302231
Mönch, H.: Boundary value problem for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 75 (1980), 985-999. DOI: https://doi.org/10.1016/0362-546X(80)90010-3
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York, London, (1974).
O'Regan, D., Precup, R.: Fixed point theorems for set-valued maps and existence principles for integral inclusions. J. Math. Anal. Appl. 245 (2000), 594-612. DOI: https://doi.org/10.1006/jmaa.2000.6789
Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, (1999).
Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calculus Appl. Anal. 5 (2002), 367-386.
Szufla, S.: On the application of measure of noncompactness to existence theorems. Rendiconti del Seminaro Mathematico Della Universita di Padova 75 (1986), 1-14.
- NA
Similar Articles
- Reza Arab, Common fixed point theorem for two weakly compatible self mappings in b − metric spaces , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.