On generalized b star - closed set in topological Spaces
Downloads
DOI:
https://doi.org/10.26637/mjm502/018Abstract
In this paper, we introduce a new class of sets called generalized $b$ star - closed sets in topological spaces (briefly $g b^*$ - closed set). Also we discuss some of their properties and investigate the relations between the associated topology.
Keywords:
$g b^*$- closed setMathematics Subject Classification:
Mathematics- Pages: 401-406
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
Ahmad Al - Omari and Mohd. Salmi Md. Noorani, On Generalized $b$ - closed sets, Bull. Malays. Math. Sci. $operatorname{Soc}(2), 32(1)(2009), 19-30$.
D. Andrijevic, $b$ - open sets, Mat.Vesink., 48(1996), 59-64. DOI: https://doi.org/10.1080/00332747.1996.11024750
S.P. Arya and T. Nour, Characterizations of $s$ - normal spaces, Indian J. Pure Applied Maths, 21(8)(1990), 717-719.
P. Bhattacharya and B.K. Lahiri, Semi - generalized closed sets on topology, Indian J. Maths, 29(3)(1987), 375-382.
M. Caldas and S. Jafari, On some applications of $b$-open sets in topological spaces, Kochi J. Math., 24(4)(1998), 681-688.
G. Dimaio and T. Noiri, On s - closed spaces, Indian J. pure appl. math., 18(3)(1987), 226-233
N. Levine, Generalized closed sets in topology, Tend Circ., Mat. Palermo (2), 19(1970), 89-96. DOI: https://doi.org/10.1007/BF02843888
H. Maki, R. Devi and K. Balachandran, Associated topologies of generalized $alpha$-closed sets and $alpha$ generalized closed sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 15(1994), 51-63.
H. Maki, R.J. Umehara and T. Noiri, Every topological space is pre-T1/2, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 17(1996), 33-42.
K. Mariappa and S. Sekar, On regular generalized b -closed set, Int. Journal of Math. Analysis, 7(13)(2013), 613-624. DOI: https://doi.org/10.12988/ijma.2013.13059
M. Murugalingam, S. Somasundaram and S. Palaniammal, A generalised star sets, Bulletin of Pure and Applied sciences, 24(2)(2005), 235-238.
A.S. Mashor and M.E. El-Monsef and S.N. Ei-Deeb, On Pre continous and weak pre-Continous mapping, Proc. Math. Phys. Soc. Egypt, 53(1982), 47-53.
A. Pushpalatha and K. Anitha, $mathrm{g}^*$ s-closed set in topological spaces, Int. J. Contemp. Math. Sciences, 6(19)(2011), 917-929
- NA
Similar Articles
- S. Sekar, A. S. Thirumurugan, Numerical investigation of the nonlinear integro-differential equations using He's homotopy perturbation method , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.