On the natural lift curves for the involute spherical indicatrices in Minkowski 3-space
Downloads
DOI:
https://doi.org/10.26637/mjm502/019Abstract
This study presents some new conditions of being integral curve for the geodesic spray of the natural lift curves of the spherical indicatrices of the involutes of a given spacelike curve with a timelike binormal in Minkowski 3-space. Furthermore, depending on these conditions some interesting results about the spacelike evolute curve were obtained. Additionally we illustrate an example of our main results.
Keywords:
Minkowski space, involute-evolute curve couple, geodesic spray, natural lift curve, spherical indicatrixMathematics Subject Classification:
Mathematics- Pages: 407-415
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
A.T. Ali, Position vectors of spacelike general helices in Minkowski 3-space, Nonlinear Anal. TMA, 73 (2010) 1118-1126. DOI: https://doi.org/10.1016/j.na.2010.04.051
A.T. Ali, R. Lopez, Slant helices in Minkowski space, J. Korean Math. Soc. 48 (2011) 159-167. DOI: https://doi.org/10.4134/JKMS.2011.48.1.159
M. Barros, A. Ferrandez, P. Lucas, M.A. Merono, General helices in the three-dimensional Lorentzian space forms, Rocky Mountain J. Math. 31 (2001) 373-388. DOI: https://doi.org/10.1216/rmjm/1020171565
M. Bilici, M. Çalsskan, On the involutes of the spacelike curve with a timelike binormal in Minkowski 3-space, Int. Math. Forum. 4 (2009) 1497-1509.
M. Bilici, M. Çalışkan, İ. Aydemir, The Natural Lift Curves and the Geodesic Sprays for the Spherical Indicatrices of the Pair of Evolute-Involute Curves, Int. J. of Appl. Math. 11 (2003) 415-420.
M. Bilici, Natural lift curves and the geodesic sprays for the spherical indicatrices of the involutes of a timelike curve in Minkowski 3-space, Int. J. Phys Sci. 6 (2011) 4706-4711.
J.H. Choi, Y.H. Kim, A.T. Ali, Some associated curves of Frenet non-lightlike curves in $mathbf{E}_1^3$, J. Math. Anal. Appl. $394(2012)$ 712-723. DOI: https://doi.org/10.1016/j.jmaa.2012.04.063
M. Çalişkan, M. Bilici, Some Characterizations for the Pair of Involute-Evolute Curves in Euclidean Space $mathbf{E}^3$, Bull. of Pure and Appl.Sci. 21 (2002) 289-294.
M. Çalişkan, A.İ. Sivridağ, H.H. Hacisalihoğlu, Some Characterizations For The Natural Lift Curves and The Geodesic Spray, Commun. Fac. Sci. Univ. 33 (1984) 235-242. DOI: https://doi.org/10.1501/Commua1_0000000585
Do Carmo MP, Differantial Geometry of Curves and Surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976.
Hacisalihoğlu HH, Differantial Geometry, Ankara University Faculty of Science Press, Ankara, 2000.
K. İlarslan, Ö. Boyacioğlu, Position vectors of a timelike and a null helix in Minkowski 3-space, Chaos, Solitons and Fractals, 38 (2008) 1383-1389 DOI: https://doi.org/10.1016/j.chaos.2008.04.003
R.S. Millman, G.D. Parker, Elements of Differential Geometry. Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1977.
B. O'Neill, Semi-Riemannian Geometry with Application to relativity, Academic Press, New York, 1983.
J.G. Ratcliffe, Foundations of Hyperbolic Manifolds, Springer-Verlag New York, Inc., New York, 1994. DOI: https://doi.org/10.1007/978-1-4757-4013-4
J.A. Thorpe, Elemantary Topics In Differantial Gemetry, Springer-Verlag, New York, Heidelberg-Berlin, 1979.
H.H. Uğurlu, On The Geometry of Time-like Surfaces, Commun. Fac. Sci. Univ. Ank. Series A1, 46 (1997) 211-223. DOI: https://doi.org/10.1501/Commua1_0000000438
J. Walrave, Curves and Surfaces in Minkowski Space. PhD thesis, K.U. Leuven, Faculty of Science, Leuven, 1995.
L. Kula, Y. Yayli, On slant helix and its spherical indicatrix. Appl. Math. and Comput. 169 (2005) 600-607. DOI: https://doi.org/10.1016/j.amc.2004.09.078
S. Yılmaz, E. Özyılmaz, Y. Yayl1, M. Turgut, Tangent and trinormal spherical images of a time-like curve on the pseudohyperbolic space. Proc. Est. Acad. Sci. 59 (2010.) 216-224. DOI: https://doi.org/10.3176/proc.2010.3.04
E. İyigün, The tangent spherical image and ccr-curve of a time-like curve in $mathbf{L}^3$, J. Inequal. Appl. (2013) doi:10.1186/1029-242X-2013-55. DOI: https://doi.org/10.1186/1029-242X-2013-55
- NA
Similar Articles
- S. S. Thakur, Alpa Singh Rajput , M.R. Dhakad, Soft almost semi-continuous mappings , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.