The general solution and stability of nonadecic functional equation in matrix normed spaces
Downloads
DOI:
https://doi.org/10.26637/mjm502/020Abstract
In this paper, we present the general solution of a nonadecic functional equation and establish the Ulam-Hyers stability of nonadecic functional equation in matrix normed spaces by using the fixed point method.
Keywords:
Hyers-Ulam stability, fixed point, nonadecic functional equation, matrix normed spacesMathematics Subject Classification:
Mathematics- Pages: 416-427
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
T. Aoki, On the Stability of the Linear Transformation in Banach Spaces, J. Math. Soc. Japan, 2 (1950), 64-66. DOI: https://doi.org/10.2969/jmsj/00210064
M. Arunkumar, A. Bodaghi, J. M. Rassias and Elumalai Sathiya, The General Solution and Approximations of a Decic Type Functional Equation in Various Normed Spaces, Journal of the Chungcheong Mathematical Society, 29(2), (2016), 287-328. DOI: https://doi.org/10.14403/jcms.2016.29.2.287
L. Cadariu and V. Radu, Fixed Points and the Stability of Jensen's Functional Equation.,J. Inequal. Pure Appl. Math., 4(1) (2003), 1-7.
P. Gavruta, A Generalization of the Hyers-Ulam Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl., 184 (1994), 431-436. DOI: https://doi.org/10.1006/jmaa.1994.1211
D. H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222-224. DOI: https://doi.org/10.1073/pnas.27.4.222
G. Isac and Th. M. Rassias, Stability of $varphi$-Additive Mappings: Applications to Nonlinear Analysis, J. Funct. Anal., 19 (1996), 219-228. DOI: https://doi.org/10.1155/S0161171296000324
J. Lee, D. Shin and C. Park, An Additive Functional Inequality in Matrix Normed Spaces, Mathematical Inequalities and Applications, 16(4)(2013), 1009-1022. DOI: https://doi.org/10.7153/mia-16-79
J. Lee, D. Shin and C. Park, An AQCQ- Functional Equation in Matrix Normed Spaces, Result. Math., 64 2013:146, 1-15.
J. Lee, D. Shin and C. Park, Hyers-Ulam Stability of Functional Equations in Matrix Normed Spaces, Journal of Inequalities and Applications, 2013:22, 1-11. DOI: https://doi.org/10.1186/1029-242X-2013-22
J. Lee, C. Park and D. Shin, Functional Equations in Matrix Normed Spaces, Proc. Indian Acad. sci., 125(3) (2015), 399-412. DOI: https://doi.org/10.1007/s12044-015-0237-4
D. Mihet and V. Radu, On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces, J. Math. Anal. Appl., 343 (2008), 567-572. DOI: https://doi.org/10.1016/j.jmaa.2008.01.100
R. Murali and V. Vithya, Hyers-Ulam-Rassias Stability of Functional Equations in Matrix Normed Spaces: A fixed point approach, Assian Journal of Mathematics and Computer Research, 4(3) (2015), 155-163.
C. Park, Stability of an AQCQ-Functional Equation in Paranormed Spaces, Advances in Difference Equations., 2012:148, 1-20. DOI: https://doi.org/10.1186/1687-1847-2012-148
Th. M. Rassias, On the Stability of the Linear Mapping in Banach Spaces, Proc. Am. Math. Soc., 72 (1978), $297-300$. DOI: https://doi.org/10.1090/S0002-9939-1978-0507327-1
J. M. Rassias and Mohammad Eslamian, Fixed Points and Stability of Nonic Functional Equation in Quasi ß- Normed Spaces, Contemporary Anal. Appl. Math., 3(2) (2015), 293-309. DOI: https://doi.org/10.18532/caam.38853
J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, J. Funct. Anal., 46(1) (1982), 126-130. DOI: https://doi.org/10.1016/0022-1236(82)90048-9
J. M. Rassias, On Approximation of Approximately Linear Mappings by Linear Mappings, Bull. Sci. Math., 108(4) (1984), 445-446.
J. M. Rassias, On a New Approximation of Approximately Linear Mappings by Linear Mappings, Discuss. Math., 7 (1985), 193-196.
J. M. Rassias, Solution of a Problem of Ulam, J. Approx. Th., 57(3) (1989), 268-273. DOI: https://doi.org/10.1016/0021-9045(89)90041-5
J. M. Rassias, On the Stability of the Non-linear Euler-Lagrange Functional Equation, Chinese J. math.,20(2) (1992), 185-190.
J. M. Rassias, Solution of a Stability Problem of Ulam, Discuss. Math., 12 (1992), 95-103.
J. M. Rassias, On the Stability of the Non-linear Euler-Lagrange Functional Equation in Real Normed Linear Spaces, J. Math. Phys. Sci., 28 (1994), 231- 235.
J. M. Rassias, On the Stability of a Multi-dimensional Cauchy Type Functional Equation, Analysis and Mechanics., (1994), 365-376. DOI: https://doi.org/10.1142/9789812797131_0029
K. Ravi, J.M. Rassias and B.V. Senthil Kumar, Ulam-Hyers Stability of Undecic Functional Equation in Quasi- $beta$ Normed Spaces: Fixed Point Method, Tbilisi Mathematical Science, 9(2) (2016), 83-103. DOI: https://doi.org/10.1515/tmj-2016-0022
K. Ravi, J. M. Rassias, S. Pinelas, S. Suresh , General Solution and Stability of Quattuordecic Functional Equation in Quasi - $beta$ Normed Spaces, Advances in Pure Mathematics, 6 (2016), 921-941. DOI: https://doi.org/10.4236/apm.2016.612070
Y. Shen, W. Chen, On the Stability of Septic and Octic Functional Equations, J. Computational Analysis and Applications, 18(2), (2015), 277-290. DOI: https://doi.org/10.1186/s13660-014-0530-2
S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork (1964).
Z. Wang and P. K. Sahoo, Stability of an ACQ- Functional Equation in Various Matrix Normed Spaces, J. Nonlinear Sci. Appl., 8 (2015), 64-85. DOI: https://doi.org/10.22436/jnsa.008.01.08
T. Z. Xu , J.M. Rassias, M. J. Rassias, and W. X. Xu, A Fixed Point Approach to the Stability of Quintic and Sextic Functional Equations in Quasi-β Normed Spaces. Journal of Inequalities and Applications, (2010), 1-23. DOI: https://doi.org/10.1155/2010/423231
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.