Asymptotic behavior of the oscillatory solutions of first order neutral delay difference equations
Downloads
DOI:
https://doi.org/10.26637/mjm502/021Abstract
In this article, the asymptotic behavior of oscillatory solutions of a class of first order neutral delay difference equations with variable co-efficients and constant delays is investigated. We established a sufficient conditions of the equations under consideration approach zero as the independent variable tends to infinity.
Keywords:
Oscillatory solutions, asymptotic behavior, neutral, delay difference equationMathematics Subject Classification:
Mathematics- Pages: 428-441
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 1999. DOI: https://doi.org/10.1201/9781420027020
I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
X. Z. He, Oscillatory and asymptotic behavior of second order nonlinear difference equations, J. Math. Anal. Appl. 175, 482-498, (1993). DOI: https://doi.org/10.1006/jmaa.1993.1186
I. Katsunori, Asymptotic analysis for linear difference equations, Trans. Amer. Math. Soc., 349(1997), $4107-4142$. DOI: https://doi.org/10.1090/S0002-9947-97-01849-7
V. L. J. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, 1993. DOI: https://doi.org/10.1007/978-94-017-1703-8
G. Ladas and Y. G. Sfices, Asymptotic behavior of oscillatory solutions, Hiroshima Math. J., 18(1988), $351-359$. DOI: https://doi.org/10.32917/hmj/1206129728
Ch. G. Philos, I. K. Purnaras and Y. G. Sficas, Asymptotic behavior of the oscillatory solutions to first order non-autonomous linear neutral delay differential equations of unstable type, Math. Comput. Model., 46(2007), 422-438. DOI: https://doi.org/10.1016/j.mcm.2006.11.012
J. Popenda and E. Schmeidel, On the asymptotic behavior of solutions of linear difference equations, Publicacions Matematiques, 38(1994), 3-9. DOI: https://doi.org/10.5565/PUBLMAT_38194_01
E. Thandapani, Asymptotic and oscillatory behavior of solution of nonlinear delay difference equations, Utilitas Math. 45, 237-244,(1994).
E. Thandapani, P. Sundram, J.G. Graef and P.V. Spikes, Asymptotic properties of solutions of nonlinear second order neutral delay difference equations, Dynamic System Appl. 4, 125-136, (1995).
B. G. Zhang, Asymptotic behavior of solutions of certain difference equations, Appl. Math. Lett., 13(2000), 13-18. DOI: https://doi.org/10.1016/S0893-9659(99)00138-X
B. G. Zhang, Oscillation and asymptotic behavior of second order difference equations, J. Math. Anal. Appl. 173, 58-68, (1993). DOI: https://doi.org/10.1006/jmaa.1993.1052
B. G. Zhang, C.J. Tian and P.J.Y. Wong, Global attractivity of difference equation with variable delay, DCDIS, (to appear).
X. L. Zhou and J. Yah, Oscillatory and asymptotic properties of higher order nonlinear difference equations, Nonlinear Analysis 31 (3/4), 493-502, (1998). DOI: https://doi.org/10.1016/S0362-546X(97)00417-3
- NA
Similar Articles
- M. Bilici, T.A. Ahmad , On the natural lift curves for the involute spherical indicatrices in Minkowski 3-space , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.