Asymptotic behavior of the oscillatory solutions of first order neutral delay difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm502/021

Abstract

In this article, the asymptotic behavior of oscillatory solutions of a class of first order neutral delay difference equations with variable co-efficients and constant delays is investigated. We established a sufficient conditions of the equations under consideration approach zero as the independent variable tends to infinity.

Keywords:

Oscillatory solutions, asymptotic behavior, neutral, delay difference equation

Mathematics Subject Classification:

Mathematics
  • A. Murugesan Department of Mathematics, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India.
  • K. Venkataramanan Department of Mathematics, Vysya College, Salem - 636103, Tamil Nadu, India.
  • Pages: 428-441
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 1999. DOI: https://doi.org/10.1201/9781420027020

I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.

X. Z. He, Oscillatory and asymptotic behavior of second order nonlinear difference equations, J. Math. Anal. Appl. 175, 482-498, (1993). DOI: https://doi.org/10.1006/jmaa.1993.1186

I. Katsunori, Asymptotic analysis for linear difference equations, Trans. Amer. Math. Soc., 349(1997), $4107-4142$. DOI: https://doi.org/10.1090/S0002-9947-97-01849-7

V. L. J. Kocic and G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic, 1993. DOI: https://doi.org/10.1007/978-94-017-1703-8

G. Ladas and Y. G. Sfices, Asymptotic behavior of oscillatory solutions, Hiroshima Math. J., 18(1988), $351-359$. DOI: https://doi.org/10.32917/hmj/1206129728

Ch. G. Philos, I. K. Purnaras and Y. G. Sficas, Asymptotic behavior of the oscillatory solutions to first order non-autonomous linear neutral delay differential equations of unstable type, Math. Comput. Model., 46(2007), 422-438. DOI: https://doi.org/10.1016/j.mcm.2006.11.012

J. Popenda and E. Schmeidel, On the asymptotic behavior of solutions of linear difference equations, Publicacions Matematiques, 38(1994), 3-9. DOI: https://doi.org/10.5565/PUBLMAT_38194_01

E. Thandapani, Asymptotic and oscillatory behavior of solution of nonlinear delay difference equations, Utilitas Math. 45, 237-244,(1994).

E. Thandapani, P. Sundram, J.G. Graef and P.V. Spikes, Asymptotic properties of solutions of nonlinear second order neutral delay difference equations, Dynamic System Appl. 4, 125-136, (1995).

B. G. Zhang, Asymptotic behavior of solutions of certain difference equations, Appl. Math. Lett., 13(2000), 13-18. DOI: https://doi.org/10.1016/S0893-9659(99)00138-X

B. G. Zhang, Oscillation and asymptotic behavior of second order difference equations, J. Math. Anal. Appl. 173, 58-68, (1993). DOI: https://doi.org/10.1006/jmaa.1993.1052

B. G. Zhang, C.J. Tian and P.J.Y. Wong, Global attractivity of difference equation with variable delay, DCDIS, (to appear).

X. L. Zhou and J. Yah, Oscillatory and asymptotic properties of higher order nonlinear difference equations, Nonlinear Analysis 31 (3/4), 493-502, (1998). DOI: https://doi.org/10.1016/S0362-546X(97)00417-3

  • NA

Metrics

Metrics Loading ...

Published

01-04-2017

How to Cite

A. Murugesan, and K. Venkataramanan. “Asymptotic Behavior of the Oscillatory Solutions of First Order Neutral Delay Difference Equations”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 428-41, doi:10.26637/mjm502/021.