Existence of strongly continuous solutions for a functional integral inclusion

Downloads

DOI:

https://doi.org/10.26637/mjm502/022

Abstract

In this paper we are concerned with the existence of strongly continuous solution $x \in C[I, E]$ of the nonlinear functional integral inclusion
$$
x(t) \in F\left(t, \int_0^t g(s, x(m(s))) d s\right), \quad t \in[0, T]
$$
under the assumption that the set-valued function $F$ has Lipschitz selection in the Banach space $E$.

Keywords:

Set-valued function, continuous solutions, Functional integral inclusions, selections of the set-valued function, Lipschitz selections

Mathematics Subject Classification:

Mathematics
  • Pages: 442-448
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

J. Banas, Integrable solutions of Hammerstien and Urysohn integral equations, J. Austral. Math. Soc. (series A) $46(1989), 61-68$. DOI: https://doi.org/10.1017/S1446788700030378

T.Cardinali, K. Nikodem and F. Papalini, Some results on stability and characterization of k-convexity of set-valued functions, Ann. Polon, Math. 58(1993), 185-192. DOI: https://doi.org/10.4064/ap-58-2-185-192

B.C. Dhage, A functional integral inclusion involving Carathodories. Electron. J. Qual. Theory Differ. Equ. 2003, Paper No. 14, 18 p., electronic only (2003).

B.C. Dhage, A functional integral inclusion involving discontinuities. Fixed Point Theory 5, No. 1, (2004), $53 ? 64$. DOI: https://doi.org/10.14232/ejqtde.2003.1.14

K. Deimling, Nonlinear functional Analysis, Springer-Verlag, (1985). DOI: https://doi.org/10.1007/978-3-662-00547-7

A. M. A. El-sayed and A. G. Ibrahim, Multivalued fractional differential equations, Applied Mathematics and Computation, 68(1995), 15-25. DOI: https://doi.org/10.1016/0096-3003(94)00080-N

M. A. Kransel'skii, on the continuity of the operator $F u(x)=f(x, u(x))$, Dokl. Akad. Nauk., 77, (1951), 185-188.

M. A. Kransel'skii, P. P. Zabrejko, J. I. Pustyl'nik and P. J. Sobolevskii, Integral operators in spaces of summable functions, Noordhoff, Leyden, (1976). DOI: https://doi.org/10.1007/978-94-010-1542-4_5

K.Nikodem, On quadratic set-valued functions, Publ. Math. Debrecen 30(1984), 297-301. DOI: https://doi.org/10.5486/PMD.1983.30.3-4.11

K. Nikodem, On jensen's functional equation for set-valued functions, Rad.Math 3(1987), 23-33. DOI: https://doi.org/10.1007/BF01836150

K. Nikodem, set-valued solutions of the pexider functional equations, Funkcial.Ekvac 31(1988), $227-231$.

D.Popa, Functional inclusions on square symmetric grupoids and Hyers-Ulam stability,Mathematical Inequal & Appl. 7(2004), 419-428. DOI: https://doi.org/10.7153/mia-07-42

D.Popa, Aproperty of a functional inclusion connected with Hyers-Ulam stability. J. Math. Inequal, $4(2009), 591-598$ DOI: https://doi.org/10.7153/jmi-03-57

D. O'Regan, Integral inclusions of upper semi-continuous or lower semi- continuous type, Proc. Amer. Math. Soc. 124(1996), 2391-2399. DOI: https://doi.org/10.1090/S0002-9939-96-03456-9

P. P. Zabrejko, A. I. Koshelev, M. A. Kransel'skii, S. G. Mikhlin, L. S. Rakovshchik and V. J. Stetsenko, Integral equations,Nauka, Moscow, 1968 [English Translation: Noordhoff, Leyden (1975)].

  • NA

Metrics

Metrics Loading ...

Published

01-04-2017

How to Cite

Ahmed M. A. El-Sayed, and Nesreen F. M. El-haddad. “Existence of Strongly Continuous Solutions for a Functional Integral Inclusion”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 442-8, doi:10.26637/mjm502/022.