Existence of strongly continuous solutions for a functional integral inclusion
Downloads
DOI:
https://doi.org/10.26637/mjm502/022Abstract
In this paper we are concerned with the existence of strongly continuous solution $x \in C[I, E]$ of the nonlinear functional integral inclusion
$$
x(t) \in F\left(t, \int_0^t g(s, x(m(s))) d s\right), \quad t \in[0, T]
$$
under the assumption that the set-valued function $F$ has Lipschitz selection in the Banach space $E$.
Keywords:
Set-valued function, continuous solutions, Functional integral inclusions, selections of the set-valued function, Lipschitz selectionsMathematics Subject Classification:
Mathematics- Pages: 442-448
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
J. Banas, Integrable solutions of Hammerstien and Urysohn integral equations, J. Austral. Math. Soc. (series A) $46(1989), 61-68$. DOI: https://doi.org/10.1017/S1446788700030378
T.Cardinali, K. Nikodem and F. Papalini, Some results on stability and characterization of k-convexity of set-valued functions, Ann. Polon, Math. 58(1993), 185-192. DOI: https://doi.org/10.4064/ap-58-2-185-192
B.C. Dhage, A functional integral inclusion involving Carathodories. Electron. J. Qual. Theory Differ. Equ. 2003, Paper No. 14, 18 p., electronic only (2003).
B.C. Dhage, A functional integral inclusion involving discontinuities. Fixed Point Theory 5, No. 1, (2004), $53 ? 64$. DOI: https://doi.org/10.14232/ejqtde.2003.1.14
K. Deimling, Nonlinear functional Analysis, Springer-Verlag, (1985). DOI: https://doi.org/10.1007/978-3-662-00547-7
A. M. A. El-sayed and A. G. Ibrahim, Multivalued fractional differential equations, Applied Mathematics and Computation, 68(1995), 15-25. DOI: https://doi.org/10.1016/0096-3003(94)00080-N
M. A. Kransel'skii, on the continuity of the operator $F u(x)=f(x, u(x))$, Dokl. Akad. Nauk., 77, (1951), 185-188.
M. A. Kransel'skii, P. P. Zabrejko, J. I. Pustyl'nik and P. J. Sobolevskii, Integral operators in spaces of summable functions, Noordhoff, Leyden, (1976). DOI: https://doi.org/10.1007/978-94-010-1542-4_5
K.Nikodem, On quadratic set-valued functions, Publ. Math. Debrecen 30(1984), 297-301. DOI: https://doi.org/10.5486/PMD.1983.30.3-4.11
K. Nikodem, On jensen's functional equation for set-valued functions, Rad.Math 3(1987), 23-33. DOI: https://doi.org/10.1007/BF01836150
K. Nikodem, set-valued solutions of the pexider functional equations, Funkcial.Ekvac 31(1988), $227-231$.
D.Popa, Functional inclusions on square symmetric grupoids and Hyers-Ulam stability,Mathematical Inequal & Appl. 7(2004), 419-428. DOI: https://doi.org/10.7153/mia-07-42
D.Popa, Aproperty of a functional inclusion connected with Hyers-Ulam stability. J. Math. Inequal, $4(2009), 591-598$ DOI: https://doi.org/10.7153/jmi-03-57
D. O'Regan, Integral inclusions of upper semi-continuous or lower semi- continuous type, Proc. Amer. Math. Soc. 124(1996), 2391-2399. DOI: https://doi.org/10.1090/S0002-9939-96-03456-9
P. P. Zabrejko, A. I. Koshelev, M. A. Kransel'skii, S. G. Mikhlin, L. S. Rakovshchik and V. J. Stetsenko, Integral equations,Nauka, Moscow, 1968 [English Translation: Noordhoff, Leyden (1975)].
- NA
Similar Articles
- R. Murali, Matina J. Rassias, V. Vithya, The general solution and stability of nonadecic functional equation in matrix normed spaces , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.