$g^* \omega \alpha$-Separation axioms in topological spaces
Downloads
DOI:
https://doi.org/10.26637/mjm502/023Abstract
In this paper, we introduce and study the new separation axioms called $\mathrm{g}^* \omega \alpha-T_i(\mathrm{i}=0,1,2)$ and weaker forms of regular and normal spaces called $\mathrm{g}^* \omega \alpha$-normal and $\mathrm{g}^* \omega \alpha$-regular spaces using $\mathrm{g}^* \omega \alpha$-closed sets in topological spaces.
Mathematics Subject Classification:
Mathematics- Pages: 449-455
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
S. P. Arya and T. M. Nour, Characterizations of S-normal Spaces, Indian Jl. Pure Appl. Math., 21(8), 717$719,1990$.
C. Dorsett, Semi-normal Spaces, Kyungpook Math. Jl., 25, 173-180, 1985.
R. Devi, Studies on Generalizations of Closed Maps and Homeomorphism in Topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, 1994.
N. Levine, Semi-open Sets and Semi Continuity in Topological Spaces, Amer. Math. Monthly, 70, 36-41, 1963. DOI: https://doi.org/10.1080/00029890.1963.11990039
O. Njastad, On Some Classes of Nearly Open Sets, Pacific Jl. Math., 15, 961-970, 1965. DOI: https://doi.org/10.2140/pjm.1965.15.961
T. Noiri and V. Popa, On G-regular Spaces and Some Functions, Mem. Fac. Sci. Kochi Univ., 20, 67-74, 1999.
S. N. Maheshwari and R. Prasad, On S-normal Spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie., 22, $27-29,1978$.
B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12, 140-144, 1996.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star $omega alpha$-Closed Sets in Topological Spaces, Jl. of New Results in Science, Vol 9, 37-45, 2015.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star $omega alpha$-Spaces in Topological Spaces, Int. Jl. of Scientific and Innovative Mathematical Research, Vol. 3, Special Issue 1, 388-391, 2015.
P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalizations of Some New Continuous Functions in Topological Spaces, Scientia Magna, Vol. 11, No. 2, 83-96, 2016.
- g^* \omega \alpha \text {-closed sets }
Similar Articles
- A. Murugesan, K. Venkataramanan, Asymptotic behavior of the oscillatory solutions of first order neutral delay difference equations , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.