$g^* \omega \alpha$-Separation axioms in topological spaces

Downloads

DOI:

https://doi.org/10.26637/mjm502/023

Abstract

In this paper, we introduce and study the new separation axioms called $\mathrm{g}^* \omega \alpha-T_i(\mathrm{i}=0,1,2)$ and weaker forms of regular and normal spaces called $\mathrm{g}^* \omega \alpha$-normal and $\mathrm{g}^* \omega \alpha$-regular spaces using $\mathrm{g}^* \omega \alpha$-closed sets in topological spaces.

Mathematics Subject Classification:

Mathematics
  • P. G. Patil Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India.
  • S. S. Benchalli Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India.
  • Pallavi S. Mirajakar Department of Mathematics, Karnatak University, Dharwad-580 003, Karnataka, India.
  • Pages: 449-455
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

S. P. Arya and T. M. Nour, Characterizations of S-normal Spaces, Indian Jl. Pure Appl. Math., 21(8), 717$719,1990$.

C. Dorsett, Semi-normal Spaces, Kyungpook Math. Jl., 25, 173-180, 1985.

R. Devi, Studies on Generalizations of Closed Maps and Homeomorphism in Topological spaces, Ph.D Thesis, Bharathiar University, Coimbatore, 1994.

N. Levine, Semi-open Sets and Semi Continuity in Topological Spaces, Amer. Math. Monthly, 70, 36-41, 1963. DOI: https://doi.org/10.1080/00029890.1963.11990039

O. Njastad, On Some Classes of Nearly Open Sets, Pacific Jl. Math., 15, 961-970, 1965. DOI: https://doi.org/10.2140/pjm.1965.15.961

T. Noiri and V. Popa, On G-regular Spaces and Some Functions, Mem. Fac. Sci. Kochi Univ., 20, 67-74, 1999.

S. N. Maheshwari and R. Prasad, On S-normal Spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie., 22, $27-29,1978$.

B. M. Munshi, Separation Axioms, Acta Ciencia Indica, 12, 140-144, 1996.

P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star $omega alpha$-Closed Sets in Topological Spaces, Jl. of New Results in Science, Vol 9, 37-45, 2015.

P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalized Star $omega alpha$-Spaces in Topological Spaces, Int. Jl. of Scientific and Innovative Mathematical Research, Vol. 3, Special Issue 1, 388-391, 2015.

P. G. Patil, S. S. Benchalli and Pallavi S. Mirajakar, Generalizations of Some New Continuous Functions in Topological Spaces, Scientia Magna, Vol. 11, No. 2, 83-96, 2016.

  • g^* \omega \alpha \text {-closed sets }

Metrics

Metrics Loading ...

Published

01-04-2017

How to Cite

P. G. Patil, S. S. Benchalli, and Pallavi S. Mirajakar. “$g^* \omega \alpha$-Separation Axioms in Topological Spaces”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 449-55, doi:10.26637/mjm502/023.