Some existence results for implicit fractional differential equations with impulsive conditions
Downloads
DOI:
https://doi.org/10.26637/mjm502/024Abstract
In this paper, we investigate the existence of solutions for implicit impulsive fractional order differential equations with non-local conditions. An example is included to prove the applicability of the results.
Keywords:
Existence, Implicit Impulsive Fractional Differential Equations, Non-local ConditionMathematics Subject Classification:
Mathematics- Pages: 456-463
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
A.Alsaedi, Existence of solutions for integro-differential equations of fractional order with anti-periodic boundary conditions. Int. J. Differ. Equ. Vol.2009 (2009), Article ID 417606, 9 pages.
A. Anguraj, P. Karthikeyan, and G. M. NGuerekata; Nonlocal Cauchy problem for some fractional abstract integrodifferential equations in Banach space, Communi.Math.Anal., vol.55(6)(2009),56-67, .
A. Anguraj, P. Karthikeyan and J.J. Trujillo; Existence of Solutions to Fractional Mixed Integrodifferential Equations with Nonlocal Initial Condition, Advan.Diff.Equan.,Volume 2011, Article ID 690653,12pages. DOI: https://doi.org/10.1155/2011/690653
A. Anguraj, P. Karthikeyan, M. Rivero, J.J. Trujillo, On new Existence Results for Fractional Integrodifferential Equations with Impulsive and Integral Conditions, Comput.Math.Appl.Vol.66 (12),(2014),25872594. DOI: https://doi.org/10.1016/j.camwa.2013.01.034
K.Balachandran and J.Y.Park, Nonlocal Cauchy problem for abstract fractional semilinear evolution equation, Nonlinear Analysis 71(2009),4471-4475. DOI: https://doi.org/10.1016/j.na.2009.03.005
D. D. Bainov, P. S. Simeonov; Systems with Impulsive effect, Horwood, Chichister, 1989.
M. Benchohra, J. Henderson and S. K. Ntouyas; Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006. DOI: https://doi.org/10.1155/9789775945501
M. Benchohra, F. Berhoun and G M. NGuerekata, Bounded solutions for fractional order differential equations on the half-line, Bull. Math. Anal. Appl. 146 (4) (2012), 62-71.
M. Benchohra and J. E. Lazreg, Exsitence results for nonlinear implicit fractional differential equations, Surveys in mathematics and its applications, volume 9,(2014) 79-92.
Chatthai Thaiprayoon et. al, Impulsive fractional boundary value problems with fractional integral jump conditions, Boundary value problems, Volume 17,(2014), 1-17. DOI: https://doi.org/10.1186/1687-2770-2014-17
A. Chauhan, J. Dabas, Fractional order Impulsive functional differential equations with nonlocal initial conditions, Electron. J. Differ. Equ., 2011 (2011), 10 pages. DOI: https://doi.org/10.1186/1687-1847-2011-25
K. Diethelm and A.D. Freed; On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity, in "Scientifice Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties" (F. Keil, W. Mackens, H. Voss, and J. Werther, Eds), Springer-Verlag, Heidelberg, 1999, 217-224. DOI: https://doi.org/10.1007/978-3-642-60185-9_24
W. G. Glockle and T. F. Nonnenmacher; A fractional calculus approach of self-similar protein dynamics, Biophys. J. $68(1995), 46-53$. DOI: https://doi.org/10.1016/S0006-3495(95)80157-8
R. Hilfer; Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. DOI: https://doi.org/10.1142/3779
Karthikeyan P., and Arul R., et. al, On the Existence of Solutions of Impulsive Fractional IntegroDifferential Equations, International Journal Of Mathematics And Scientific Computing, VOL. 2, NO. $2,(2012) 64-71$.
Karthikeyan P., and Arul R., Riemann-Liouville integral boundary value problems for impulsive fractional integro-differential equations, Malaya Journal of Matematik S(1)(2013), 24-32.
V. Lakshmikantham, D. D. Bainov and P. S. Simeonov; Theory of Impulsive Differntial Equations, Worlds Scientific, Singapore, 1989. DOI: https://doi.org/10.1142/0906
F. Mainardi, Fractional calculus: Some basic problems in continuum and statistical mechanics, in "Fractals and Fractional Calculus in Continuum Mechanics" (A. Carpinteri and F. Mainardi, Eds), pp. 291-348, Springer-Verlag, Wien, 1997. DOI: https://doi.org/10.1007/978-3-7091-2664-6_7
F. Metzler, W. Schick, H. G. Kilian and T. F. Nonnenmacher, Relaxation in filled polymers: A fractional calculus approach, J. Chem. Phys. 103 (1995), 7180-7186. DOI: https://doi.org/10.1063/1.470346
K. B. Oldham and J. Spanier; The Fractional Calculus, Academic Press, New York, London, 1974.
I. Podlubny, Fractional Differential Equation, Academic Press, San Diego, 1999.
A. M. Samoilenko, N. A. Perestyuk; Impulsive Differential Equations World Scientific, Singapore, 1995. DOI: https://doi.org/10.1142/2892
Z. Liu, X. Li, Existence and uniqueness of solutions for the nonlinear impulsive fractional differential equations, Communications in Nonlinear Science and Numerical Simulation, Volume 18 (2013), 1362-1373. DOI: https://doi.org/10.1016/j.cnsns.2012.10.010
- NA
Similar Articles
- A. M. A. El-Sayed, Al-Issa, Sh. M, Existence of continuous solutions for nonlinear functional differential and integral inclusions , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- Ahmed M. A. El-Sayed , Nesreen F. M. El-haddad , Existence of strongly continuous solutions for a functional integral inclusion , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.