Order divisor graphs of finite groups

Downloads

DOI:

https://doi.org/10.26637/mjm502/025

Abstract

For each finite group $G$ we associate a simple undirected graph $O D(G)$, order divisor graph. We investigate the interconnection between the group theoretic properties of $G$ and the graph theoretic properties of order divisor graph $O D(G)$. For a finite group $G$, we obtain the density, the girth and the diameter of $O D(G)$. Further, we obtain the relation $G \cong G^{\prime}$ if and only if $O D(G) \cong O D\left(G^{\prime}\right)$, for every distinct finite groups $G$ and $G^{\prime}$, and $A u t o(G) \subseteq A u t o(O D(G))$.

Keywords:

Finite group, finite subgroups, isomorphism, automorphism, order divisor graph

Mathematics Subject Classification:

Mathematics
  • T. Chalapathi Department of Mathematics, Sree Vidyanikethan Engineering College, Tirupati-517502, Andhra Pradesh, India.
  • R. V M S S Kiran Kumar Department of Mathematics, S. V. University, Tirupati-517502, Andhra Pradesh, India.
  • Pages: 464-474
  • Date Published: 01-04-2017
  • Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)

L.Euler, Solutio problematic ad Geometrian situs pertinentis, Comm Acad Petropolitanae, 8(1927), $128-140$.

W.K.Chen, Applied graph theory, North-Holland, Amsterdam(1971).

K.Thulasiraman and M.N.S Swamy, Graphs, Theory and algorithms, Wiley, New York.(1992). DOI: https://doi.org/10.1002/9781118033104

R.J.Wilson and L.W.Beineke. Applications of graph theory, Academic, London.(1979).

W.Mayeda, Graph theory, Wiley, New York.(1972).

N.Deo, Graph theory with applications to engineering and computer science, Prentice Hall, EnglewoodCliffs.(1998).

N. Biggs, Algebraic graph theory, 2nd edition. Cambridge University Press, Cambridge.(1993).

C. Godsil and G.Royle, Algebraic Graph Theory, Graduate text in mathematics. Springer. Heidelberg.(2001). DOI: https://doi.org/10.1007/978-1-4613-0163-9

G. S. Singh and G. Santhosh, Divisor Graphs-I, Preprint.(2000).

Chartrand, Muntean, Saenpholophant and Zhang, Which graphs are Divisor Graphs, Congressus Numerantium, 151(2001), 189-200.

Yu-ping Tsao, A Simple Research of Divisor Graphs, The 29th Workshop on Combinatorial Mathematics and Computation Theory, 186-190.

R. Rajkumar and P.Devi, Coprime graph of subgroups of a group, arXiv:1510.00129v2 [math.GR] (2015).

S.Arumugam and S.Ramachandran, Invitation to Graph Theory, Scitech Publications (India) Pvt Ltd. (2015).

Vitaly I. Voloshin, Introduction to Graph Theory, Nova Science Publishers. Inc. New York. (2009).

H.E. Rose, A Course on Finite Groups, Springer Science & Business Media.(2009). DOI: https://doi.org/10.1007/978-1-84882-889-6

A.Mark and Armstrong, Groups and Symmetry, Springer Science and Business Media.(2013).

K.H.Rosen, Elementary number theory and its applications, Addison-Wesley.(1984).

  • NA

Metrics

PDF views
138
Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202625
|

Published

01-04-2017

How to Cite

T. Chalapathi, and R. V M S S Kiran Kumar. “Order Divisor Graphs of Finite Groups”. Malaya Journal of Matematik, vol. 5, no. 02, Apr. 2017, pp. 464-7, doi:10.26637/mjm502/025.