Order divisor graphs of finite groups
Downloads
DOI:
https://doi.org/10.26637/mjm502/025Abstract
For each finite group $G$ we associate a simple undirected graph $O D(G)$, order divisor graph. We investigate the interconnection between the group theoretic properties of $G$ and the graph theoretic properties of order divisor graph $O D(G)$. For a finite group $G$, we obtain the density, the girth and the diameter of $O D(G)$. Further, we obtain the relation $G \cong G^{\prime}$ if and only if $O D(G) \cong O D\left(G^{\prime}\right)$, for every distinct finite groups $G$ and $G^{\prime}$, and $A u t o(G) \subseteq A u t o(O D(G))$.
Keywords:
Finite group, finite subgroups, isomorphism, automorphism, order divisor graphMathematics Subject Classification:
Mathematics- Pages: 464-474
- Date Published: 01-04-2017
- Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
L.Euler, Solutio problematic ad Geometrian situs pertinentis, Comm Acad Petropolitanae, 8(1927), $128-140$.
W.K.Chen, Applied graph theory, North-Holland, Amsterdam(1971).
K.Thulasiraman and M.N.S Swamy, Graphs, Theory and algorithms, Wiley, New York.(1992). DOI: https://doi.org/10.1002/9781118033104
R.J.Wilson and L.W.Beineke. Applications of graph theory, Academic, London.(1979).
W.Mayeda, Graph theory, Wiley, New York.(1972).
N.Deo, Graph theory with applications to engineering and computer science, Prentice Hall, EnglewoodCliffs.(1998).
N. Biggs, Algebraic graph theory, 2nd edition. Cambridge University Press, Cambridge.(1993).
C. Godsil and G.Royle, Algebraic Graph Theory, Graduate text in mathematics. Springer. Heidelberg.(2001). DOI: https://doi.org/10.1007/978-1-4613-0163-9
G. S. Singh and G. Santhosh, Divisor Graphs-I, Preprint.(2000).
Chartrand, Muntean, Saenpholophant and Zhang, Which graphs are Divisor Graphs, Congressus Numerantium, 151(2001), 189-200.
Yu-ping Tsao, A Simple Research of Divisor Graphs, The 29th Workshop on Combinatorial Mathematics and Computation Theory, 186-190.
R. Rajkumar and P.Devi, Coprime graph of subgroups of a group, arXiv:1510.00129v2 [math.GR] (2015).
S.Arumugam and S.Ramachandran, Invitation to Graph Theory, Scitech Publications (India) Pvt Ltd. (2015).
Vitaly I. Voloshin, Introduction to Graph Theory, Nova Science Publishers. Inc. New York. (2009).
H.E. Rose, A Course on Finite Groups, Springer Science & Business Media.(2009). DOI: https://doi.org/10.1007/978-1-84882-889-6
A.Mark and Armstrong, Groups and Symmetry, Springer Science and Business Media.(2013).
K.H.Rosen, Elementary number theory and its applications, Addison-Wesley.(1984).
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.