Siago’s K-fractional calculus operators
Downloads
DOI:
https://doi.org/10.26637/mjm503/002Abstract
The aim of present paper is to define a pair of $k$-Saigo fractional integral and derivative operators involving generalized $k$-hypergeometric function. The Saigo-k generalized fractional operators involving $k$-hypergeometric function in the kernel are applied to the generalized $k$-Mittag-Leffler function and evaluate the formula
$$
{ }_2 F_{1, k}\left[\begin{array}{cc}
(\alpha, k),(\beta, k) & \\
(\gamma, k) & ; \frac{1}{k}
\end{array}\right]=\frac{\Gamma_k(\gamma) \Gamma_k(\gamma-\alpha-\beta)}{\Gamma_k(\gamma-\alpha) \Gamma_k(\gamma-\beta)}
$$
using the integral representation for $k$-hypergeometric function.
Keywords:
k-functions, k-fractional calculusMathematics Subject Classification:
Mathematics- Pages: 494-504
- Date Published: 01-07-2017
- Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
V.B.L. Chaurasia and S.C.Pandey, Scientia, On the fractional calculus of generalized MittagLeffler function, Series A: Mathematical Sciences, 20(2010), 113-122.
R. Diaz and C. Teruel, $q, k$-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12(1) (2005), 118-134. DOI: https://doi.org/10.2991/jnmp.2005.12.1.10
R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15(2) (2007), 179-192.
R. Diaz, C. Ortiz and E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math., 8 (2010), 448-458. DOI: https://doi.org/10.2478/s11533-010-0029-0
A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. I. McGraw-Hill, New York-Toronto-London (1953).
A.Gupta and C.L.Parihar, K-new generalized Mittag-Leffler function, Journal of fractional calculus and applications, 5(1) (2014), 165-176. DOI: https://doi.org/10.1155/2014/907432
A.Gupta and C.L.Parihar, Fractional differintegral operators of the generalized Mittag-Leffler function, Journal of fractional calculus and applications, 5(1) (2014), 165-176. DOI: https://doi.org/10.5269/bspm.v33i1.21962
K.S.Gehlot and J.C.Prajapati, Fractional calculus of generalized k-Wright function, Journal of fractional calculus and applications, 4(2) (2013), 283-289.
C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5(14) (2010), 653-660.
K.K. Kataria and P.Vellaisamy, The generalized K-Wright function and Marichev-Saigo-Maeda fractional operators, arXiv: 1408.4762v1 [math.CA], 2014, 1-15. DOI: https://doi.org/10.1155/2014/274093
V. Krasniqi, A limit for the k-gamma and $k$-beta function, Int. Math. Forum, 5(33) (2010), 16131617
M. Mansour, Determining the k-generalized gamma function $Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sciences, 4(21) (2009), 1037-1042.
S. Mubeen, K-analogue of Kummers first formula, Journal Of inequalities and Special Functions, 3(3) (2012),41-44.
S. Mubeen* and A. Rehman, A note on k-gamma function and pochhamer $k$-symbol, Journal of inequalities and Mathematical Sciences, 6(2),(2014), 93-107.
S. Mubeen and G. M. Habibullah, k-Fractional Integrals and Application, Int. J. Contemp. Math. Science, 7(2) (2012), 89-94.
S. Mubeen and G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. J. Contemp. Math. Science, 7(4) (2012), 203-207.
L. Romero and R. Cerutti, Fractional Calculus of a $k$-Wrigth type function, Int. J. Contemp. Math. Science, 7(31) (2012), 1547-1557.
A. Rehman, S. Mubeen ${ }^*$, R. Safdar and N. Sadiq, Properties of k-beta function with several variables, Open Mathematics, 13(2015), 308-320. DOI: https://doi.org/10.1515/math-2015-0030
M.Saigo, A Remark on integral operators involving the Gauss hypergeometric functions, Math .Rep. Kyushu Univ, No.11 (1978), 135-143.
S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et al. (1993).
- NA
Similar Articles
- S. Sekar, A. Sakthivel , Numerical investigation of the hybrid fuzzy differential equations using He's homotopy perturbation method , Malaya Journal of Matematik: Vol. 5 No. 02 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM

This work is licensed under a Creative Commons Attribution 4.0 International License.