Siago’s K-fractional calculus operators

Downloads

DOI:

https://doi.org/10.26637/mjm503/002

Abstract

The aim of present paper is to define a pair of $k$-Saigo fractional integral and derivative operators involving generalized $k$-hypergeometric function. The Saigo-k generalized fractional operators involving $k$-hypergeometric function in the kernel are applied to the generalized $k$-Mittag-Leffler function and evaluate the formula
$$
{ }_2 F_{1, k}\left[\begin{array}{cc}
(\alpha, k),(\beta, k) & \\
(\gamma, k) & ; \frac{1}{k}
\end{array}\right]=\frac{\Gamma_k(\gamma) \Gamma_k(\gamma-\alpha-\beta)}{\Gamma_k(\gamma-\alpha) \Gamma_k(\gamma-\beta)}
$$
using the integral representation for $k$-hypergeometric function.

Keywords:

k-functions, k-fractional calculus

Mathematics Subject Classification:

Mathematics
  • Anjali Gupta 1523, Sudama Nagar, 60 Feet road, Indore-452009, M.P, India.
  • C.L. Parihar 500-Pushpratan Park, Devguradia, Indore-452016, M.P, India.
  • Pages: 494-504
  • Date Published: 01-07-2017
  • Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)

V.B.L. Chaurasia and S.C.Pandey, Scientia, On the fractional calculus of generalized MittagLeffler function, Series A: Mathematical Sciences, 20(2010), 113-122.

R. Diaz and C. Teruel, $q, k$-Generalized gamma and beta functions, J. Nonlinear Math. Phys., 12(1) (2005), 118-134. DOI: https://doi.org/10.2991/jnmp.2005.12.1.10

R. Diaz and E. Pariguan, On hypergeometric functions and Pochhammer $k$-symbol, Divulg. Mat., 15(2) (2007), 179-192.

R. Diaz, C. Ortiz and E. Pariguan, On the k-gamma q-distribution, Cent. Eur. J. Math., 8 (2010), 448-458. DOI: https://doi.org/10.2478/s11533-010-0029-0

A. Erdelyi, W. Magnus, F. Oberhettinger and F.G. Tricomi, Higher Transcendental Functions, Vol. I. McGraw-Hill, New York-Toronto-London (1953).

A.Gupta and C.L.Parihar, K-new generalized Mittag-Leffler function, Journal of fractional calculus and applications, 5(1) (2014), 165-176. DOI: https://doi.org/10.1155/2014/907432

A.Gupta and C.L.Parihar, Fractional differintegral operators of the generalized Mittag-Leffler function, Journal of fractional calculus and applications, 5(1) (2014), 165-176. DOI: https://doi.org/10.5269/bspm.v33i1.21962

K.S.Gehlot and J.C.Prajapati, Fractional calculus of generalized k-Wright function, Journal of fractional calculus and applications, 4(2) (2013), 283-289.

C. G. Kokologiannaki, Properties and inequalities of generalized k-gamma, beta and zeta functions, Int. J. Contemp. Math. Sciences, 5(14) (2010), 653-660.

K.K. Kataria and P.Vellaisamy, The generalized K-Wright function and Marichev-Saigo-Maeda fractional operators, arXiv: 1408.4762v1 [math.CA], 2014, 1-15. DOI: https://doi.org/10.1155/2014/274093

V. Krasniqi, A limit for the k-gamma and $k$-beta function, Int. Math. Forum, 5(33) (2010), 16131617

M. Mansour, Determining the k-generalized gamma function $Gamma_k(x)$ by functional equations, Int. J. Contemp. Math. Sciences, 4(21) (2009), 1037-1042.

S. Mubeen, K-analogue of Kummers first formula, Journal Of inequalities and Special Functions, 3(3) (2012),41-44.

S. Mubeen* and A. Rehman, A note on k-gamma function and pochhamer $k$-symbol, Journal of inequalities and Mathematical Sciences, 6(2),(2014), 93-107.

S. Mubeen and G. M. Habibullah, k-Fractional Integrals and Application, Int. J. Contemp. Math. Science, 7(2) (2012), 89-94.

S. Mubeen and G. M. Habibullah, An integral representation of some $k$-hypergeometric functions, Int. J. Contemp. Math. Science, 7(4) (2012), 203-207.

L. Romero and R. Cerutti, Fractional Calculus of a $k$-Wrigth type function, Int. J. Contemp. Math. Science, 7(31) (2012), 1547-1557.

A. Rehman, S. Mubeen ${ }^*$, R. Safdar and N. Sadiq, Properties of k-beta function with several variables, Open Mathematics, 13(2015), 308-320. DOI: https://doi.org/10.1515/math-2015-0030

M.Saigo, A Remark on integral operators involving the Gauss hypergeometric functions, Math .Rep. Kyushu Univ, No.11 (1978), 135-143.

S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon et al. (1993).

  • NA

Metrics

Metrics Loading ...

Published

01-07-2017

How to Cite

Anjali Gupta, and C.L. Parihar. “Siago’s K-Fractional Calculus Operators”. Malaya Journal of Matematik, vol. 5, no. 03, July 2017, pp. 494-0, doi:10.26637/mjm503/002.