On \(\mathcal{I}_{\sigma }\) arithmetic convergence
Downloads
DOI:
https://doi.org/10.26637/mjm0903/001Abstract
In this paper, we introduce the concepts of \(\mathcal{I}\)-invariant arithmetic convergence, \(\mathcal{I}^{\ast }\)-invariant arithmetic convergence, strongly \(q\)-invariant arithmetic convergence for real sequences, and give some inclusion relations.
Keywords:
Iideal, invariant, arithmetic convergenceMathematics Subject Classification:
40A05 , 40A99, 46A70, 46A99- Pages: 64-71
- Date Published: 01-07-2021
- Vol. 9 No. 03 (2021): Malaya Journal of Matematik (MJM)
W.H. Ruckle, Arithmetical summability, J. Math. Anal. Appl., 396(2012), 741-748.
T. Yaying and B. Hazarika, On arithmetical summability and multiplier sequences, Nat. Acad. Sci. Lett., 40(1)(2017), 43-46.
T. Yaying and B. Hazarika, On arithmetic continuity, Bol. Soc. Parana Mater., 35(1) (2017), 139-145.
T. Yaying, B. Hazarika and H. Çakalli, New results in quasi cone metric spaces, J. Math. Comput. Sci., 16(2016), 435-444.
T. Yaying and B. Hazarika, On arithmetic continuity in metric spaces, Afr. Mat., 28(2017), 985-989.
T. Yaying and B. Hazarika, Lacunary Arithmetic Statistical Convergence, Nat. Acad. Sci. Lett., 43(6)(2020), 547-551.
Ö. Kişi, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence, Palest. J. Math., in press.
Ö. Kişi, On $mathcal{I}$-lacunary arithmetic statistical convergence, J. Appl. Math. Informatics, in press.
Ö. Kişi, On lacunary $mathcal{I}$-invariant arithmetic convergence, Malaya J. Mat., in press.
H. Fast, Sur la convergence statistique, Colloq. Math., 2(1951), 241-244.
J.A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
T. S̆alát, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.
P. Kostyrko, M. Macaj and T. S̆alát, $mathcal{I}$-convergence, Real Anal. Exchange, 26(2)(2000), 669-686.
P. Kostyrko, M. Macaj, T. S̆alát and M. Sleziak, $mathcal{I}$-convergence and extremal $mathcal{I}$-limit points, Math. Slovaca, 55(2005), 443-464.
T. S̆alát, B.C. Tripathy and M. Ziman, On some properties of $mathcal{I}$-convergence, Tatra Mt. Math. Publ., 28(2004), 279-286.
B.C. Tripathy and B. Hazarika, $mathcal{I}$-monotonic and $mathcal{I}$-convergent sequences, Kyungpook Math. J., 51(2011), 233-239.
A. Nabiev, S. Pehlivan and M. Gürdal, On $mathcal{I}$-Cauchy sequences, Taiwanese J. Math., 11(2007), 569-566.
P. Das, E. Savaş and S.K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24(2011), 1509-1514.
E. Savaş and M. Gürdal, $mathcal{I}$-statistical convergence in probabilistic normed space, Sci. Bull. Series A Appl. Math. Physics, 77(4)(2015), 195-204.
M. Gürdal and M.B Huban, On $mathcal{I}$-convergence of double sequences in the Topology induced by random 2-norms, Mat. Vesnik, 66(1)(2014), 73-83.
M. Gürdal and A. Şahiner, Extremal $mathcal{I}$-limit points of double sequences, Appl. Math. E-Notes, 8(2008), 131-137.
E. Savaş and M. Gürdal, Certain summability methods in intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst. 27(4)(2014), 1621-1629.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Ömer Kişi
This work is licensed under a Creative Commons Attribution 4.0 International License.