Asymptotic behavior of solution for a fractional Riemann-Liouville differential equations on time scales
Downloads
DOI:
https://doi.org/10.26637/mjm503/011Abstract
In this paper, we will establish asymptotic behavior of solutions for the fractional order nonlinear dynamic equation on time scales
$$
\left(p(t)_{t_0}^{\mathbb{T}} \mathcal{D}_t^\alpha x(t)\right)^{\Delta}+f\left(t, x^\sigma(t)\right)=0, \quad \text { for all } t \in\left[t_0,+\infty\right)_{\mathbb{T}}
$$
with $\alpha \in[0,1)$, where ${ }_{t_0}^{\mathrm{T}} \mathcal{D}_t^\alpha x$ is the Riemann-Liouville fractional derivative of order $\alpha$ of $x$ on time scales. We obtain some asymptotic behavior of solutions for the equation by developing a generalized Riccati substitution technique. Our results in this paper some sufficient conditions for asymptotic behavior of all solutions.
Keywords:
Oscillation, Dynamic equations, Time scale, Riccati technique, Fractional calculusMathematics Subject Classification:
Mathematics- Pages: 561-568
- Date Published: 01-07-2017
- Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
S. Hilger, Ein Maßkettenakalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988 (in German).
R. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales, Math. Inequal. Appl. 4(2001), 535-557. DOI: https://doi.org/10.7153/mia-04-48
M. Bohner, A.C.Peterson, Dynamic Equations on Time Scales. An Introduction with Applications. Birkäuser Boston, Inc., Boston, MA, 2001. DOI: https://doi.org/10.1007/978-1-4612-0201-1
M. Bohner, A.C. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser Boston, Inc., Boston, MA, 2003. DOI: https://doi.org/10.1007/978-0-8176-8230-9
S. H. Saker, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. Comput. App. Mat, 187(2006), 123-141. DOI: https://doi.org/10.1016/j.cam.2005.03.039
L. Erbe, T.S. Hassan, A. Peterson, Oscillation criteria for nonlinear damped dynamic equations on time scales. Appl. Math. Comp. 203(2008), 343-357 DOI: https://doi.org/10.1016/j.amc.2008.04.038
S. R. Grace, M. Bohner, S. Sun. Oscillation of fourth-order dynamic equations. Hacettepe. J. Math. Statistics, 39(2010), 545 - 553.
S.R.Grace, R. P. Agarwal, and Sandra Pinelas, On the oscillation of fourth-order superlinear dynamic equations on time Scales, Dynamic. Systems. Appl, 20(2011), 45-54.
T. Li, E. Thandapani, S. Tang, Oscillation theorems for fourth-order delay dynamic equations on time scales. Bulletin. Mat. Anal. Appl, 3(2011), 190-199. DOI: https://doi.org/10.1155/2011/840569
B. Baculíkovà, J. Dzǔurina, Oscillation theorems for higher order neutral differential equations. Appl. Mat. Comp. 219(2012), 3769-3778. DOI: https://doi.org/10.1016/j.amc.2012.10.006
S. R. Grace, R. P. Agarwal, P J Y. Wong, A. Zafer, On the oscillation of fractional differential equations. Fract. Calc. Appl. Anal. 15(2012), 222-231. DOI: https://doi.org/10.2478/s13540-012-0016-1
D. X. Chen, Oscillation criteria of fractional differential equations. Adv. Differ. Equ. 2012, 1-10. DOI: https://doi.org/10.1186/1687-1847-2012-33
R.P. Agarwal, M. Bohner, T. Li, C. Zhang. A new approach in the study of oscillatory behavior of even-order neutral delay differential equations. Appl. Mat. Comp. 2013, 787-794. DOI: https://doi.org/10.1016/j.amc.2013.09.037
S. R. Grace. On the Oscillation of nth Order Dynamic Equations on Time-Scales. Mediterr. J. Math. 10 (2013), $147-156$. DOI: https://doi.org/10.1007/s00009-012-0201-9
C. Zhanga, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations. Appl. Mat. Letters, 26 (2013), 179-183. DOI: https://doi.org/10.1016/j.aml.2012.08.004
D. X. Chen, P. X. Qu, Y. H. Lan, Forced oscillation of certain fractional differential equations, Adv. Diff. Equ. 2013. DOI: https://doi.org/10.1186/1687-1847-2013-125
Y. QI, Ji. YU. Oscillation criteria for fourth-order nonlinear delay dynamic equations. Elec. J. Diff. Equa, 79(2013),1-17. DOI: https://doi.org/10.1186/1687-1847-2013-178
Z. Han, Y. Sun, M. Xu, Oscillation criteria for p-Laplacian delay dynamic equations with damping on time scales, Adv. Diff. Equa. 2013. DOI: https://doi.org/10.1186/1687-1847-2013-145
Ya. Shi, Oscillation criteria for nth order nonlinear neutral differential equations. Appl. Mat. Comp, 235 (2014), 423-429. DOI: https://doi.org/10.1016/j.amc.2014.03.018
N. Benkhettou, S. Hassani, D. F.M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud University-Science (2015). DOI: https://doi.org/10.1016/j.jksus.2015.05.003
N. Benkhettou, A. Hammoudi, D. F.M. Torre, Existence and uniqueness of solution for a fractional RiemannLiouville initial value problem on time scales, J. King Saud University-Science (2015). DOI: https://doi.org/10.1016/j.jksus.2015.08.001
F. Z. Ladrani, A. Hammoudi, A. Benaissa cherif, Oscillation theorems for fourth-order nonlinear dynamic equations on time scales, Elec. J. Mat. Anal. Appl, 3(2015), 46-58.
A. Benaissa cherif, F. Z. Ladrani, A. Hammoudi, Oscillation theorems for higher order neutral nonlinear dynamic equations on time scales, Malaya. J. Mat, 4(2016), 599-605. DOI: https://doi.org/10.26637/mjm404/007
- NA
Similar Articles
- Ariel C. Pedrano, Ricky F. Rulete , On the total product cordial labeling on the cartesian product of $P_m \times C_n$, $C_m \times C_n$ and the generalized Petersen graph $P(m, n)$ , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.