Anti S-fuzzy soft subhemirings of a hemiring

Downloads

DOI:

https://doi.org/10.26637/mjm503/013

Abstract

In this paper, we have studied the algebraic operations of anti S-fuzzy soft sets to establish their basic properties. We have discussed different algebraic structures of anti S-fuzzy soft sets under the restricted and extended operations of union and intersection in a comprehensive manner. Logical equivalences have also been made in order to give a complete overview of these structures.

Keywords:

Fuzzy soft set, anti S fuzzy soft subhemiring, pseudo anti S fuzzy soft coset

Mathematics Subject Classification:

Mathematics
  • N. Anitha Department of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.
  • M. Latha Department of Mathematics, Karpagam University, KAHE, Coimbatore-641021, Tamil Nadu, India.
  • Pages: 574-579
  • Date Published: 01-07-2017
  • Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)

M. T. Abu Osman, On some product of fuzzy subgroups, Fuzzy Sets and Systems, 24(1987) 79-86. DOI: https://doi.org/10.1016/0165-0114(87)90115-1

B. Ahmad and A. Kharal, On fuzzy soft sets, Advances in Fuzzy Systems, 1-6, 2009. DOI: https://doi.org/10.1155/2009/586507

H. Aktas and N. CaSman, Soft sets and soft groups, Inform. Sci. 177 (2007) 2726-2735. DOI: https://doi.org/10.1016/j.ins.2006.12.008

M. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set Theory, Computers and Mathematics with Applications, 57(2009), 1547-1553. DOI: https://doi.org/10.1016/j.camwa.2008.11.009

M. I. Ali, M. Shabir and M. Naz, Algebraic structures of soft sets associated with new operations, Computers and Mathematics with Applications, 61(2011), 2647-2654. DOI: https://doi.org/10.1016/j.camwa.2011.03.011

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20(1986): 87-96. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3

Bih-Sheue Shieh, Infinite fuzzy relation equations with continuous t-norms, Information Sciences, 178(2008), 1961-1967. DOI: https://doi.org/10.1016/j.ins.2007.12.006

D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications, Academic Press, 1980.

F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Computers and Mathematics with Applications, 56(2008) 2621-2628. DOI: https://doi.org/10.1016/j.camwa.2008.05.011

Y. B. Jun, Soft BCK/BCI-algebra, Computers and Mathematics with Applications, 56(2008) 14081413. DOI: https://doi.org/10.1016/j.camwa.2008.02.035

D. Molodtsov, Soft set theory first result, Computers and Mathematics with Applications, 37 (1999) 19-31 DOI: https://doi.org/10.1016/S0898-1221(99)00056-5

P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Computers and Mathematics with Applications, 45 (2003), 555-562. DOI: https://doi.org/10.1016/S0898-1221(03)00016-6

P. K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, The J. Fuzzy Math., 9(2001): 589-602.

Qiu-Mei Sun, Zi-Liong Zhang and Jing Liu, Soft sets and soft modules, Lecture Notes in Comput. Sci., $5009(2008)$ 403-409.

X. Yang, D. Yu, J. Yang and C. Wu, Generalization of Soft Set Theory: From Crisp to Fuzzy Case, Proceedings of the Second International Conference of Fuzzy Information and Engineering (ICFIE2007), 27-Apr., pp. 345-355. DOI: https://doi.org/10.1007/978-3-540-71441-5_39

L. A. Zadeh, Fuzzy sets, Inform. And Control, 8(1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

H. J. Zimmermann, Fuzzy Set Theory and Its Applications, Kluwer, 1991. DOI: https://doi.org/10.1007/978-94-015-7949-0

  • NA

Metrics

Metrics Loading ...

Published

01-07-2017

How to Cite

N. Anitha, and M. Latha. “Anti S-Fuzzy Soft Subhemirings of a Hemiring”. Malaya Journal of Matematik, vol. 5, no. 03, July 2017, pp. 574-9, doi:10.26637/mjm503/013.