Oscillation criteria for nonlinear difference equations with superlinear neutral term

Downloads

DOI:

https://doi.org/10.26637/mjm503/014

Abstract

In this paper, the authors obtain sufficient conditions for the oscillation of all solutions of the equation
$$
\Delta\left(a_n \Delta\left(x_n+p_n x_{n-k}^\alpha\right)\right)+q_n x_{n+1-l}^\beta=0
$$
where $\alpha \geq 1$ and $\beta>0$ are ratio of odd positive integers, and $\left\{a_n\right\},\left\{p_n\right\}$ and $\left\{q_n\right\}$ are real positive sequences. Examples are provided to illustrate the importance of the main results.

Keywords:

Oscillation, nonlinear difference equation, superlinear neutral term

Mathematics Subject Classification:

Mathematics
  • B. Kamaraj Department of Mathematics, S.I.V.E.T College, Chennai-73, Tamil Nadu, India.
  • R. Vasuki Department of Mathematics, S.I.V.E.T College, Chennai-73, Tamil Nadu, India.
  • Pages: 580-586
  • Date Published: 01-07-2017
  • Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)

R.P.Agarwal, S.R.Grace and D.O'Regan, Oscillation Theory For Difference and Functional Differential Equations, Kluwer, The Netherlands, 2000. DOI: https://doi.org/10.1007/978-94-015-9401-1

R.P.Agarwal, M. Bohner, S.R. Grace and D.O'Regan, Discrete Oscillation Theory, Hindawi Publ. Corp., New York, 2005. DOI: https://doi.org/10.1155/9789775945198

I. Gyori and G. Ladas, Oscillation Theory of Delay differential Equations with Applications, Clarendan Press, Oxford, 1991.

J.K.Hale, Theory of Functional Differential Equations, Springer, New York, 1987.

X. H. Tang and Y. Liu, Oscillation for nonlinear delay difference equations, Tamkang J. Math., 32(2001), $275-280$. DOI: https://doi.org/10.5556/j.tkjm.32.2001.342

E. Thandapani, Z. Liu, R. Arul and P. S. Raja, Oscillation and asymptotic behavior of second order difference equations with nonlinear neutral term, Appl.Math. E-Notes., 4(2004), 59-67.

E.Thandapani, S.Pandian and R.K.Balasubramanian, Oscillation of solutions of nonlinear neutral difference equations with nonlinear neutral term, Far East J. Appl. Math., 15(2004),47-62.

E. Thandapani and S. Selvarangam, Oscillation theorems of second order quasilinear neutral difference equations, J. Math. Comput. Sci., 2(2012), 866-879. DOI: https://doi.org/10.1186/1687-1847-2012-4

K.S.Vidhyaa, C.Dharuman J.R.Graef and E.Thandapani, Oscillation of second order difference equations with a sublinear neutral term, J. Math. Appl., (to appear).

J.Yang, X.Guan and W.Liu, Oscillation and asymptotic behavior of second order neutral difference equation, Ann. Diff. Equ., 13(1997), 94-106.

M.K.Yildiz and H.Ogurmez, Oscillation results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term, Hacettepe J. Math. Stat., 43(2014), 809-814.

Z.Zhang, J.Chen and C.Zhang, Oscillation of solutions for second order nonlinear difference equations with nonlinear neutral term, Comput. Math. Appl., 41(2001), 1487-1494. DOI: https://doi.org/10.1016/S0898-1221(01)00113-4

  • NA

Metrics

Metrics Loading ...

Published

01-07-2017

How to Cite

B. Kamaraj, and R. Vasuki. “Oscillation Criteria for Nonlinear Difference Equations With Superlinear Neutral Term”. Malaya Journal of Matematik, vol. 5, no. 03, July 2017, pp. 580-6, doi:10.26637/mjm503/014.