Intuitionistic Q-fuzzy ternary subhemiring of a hemiring

Downloads

DOI:

https://doi.org/10.26637/mjm503/015

Abstract

In this paper, a generalized intuitionistic Q-fuzzy ternary subhemiring of a hemiring is proposed. Further, some important notions and basic algebraic properties of intuitionistic fuzzy sets are discussed.

Keywords:

Q-fuzzy subhemiring, Q-fuzzy ternary subhemiring, intuitionistic fuzzy ternary subhemiring, homomorphism, anti-homomorphism

Mathematics Subject Classification:

Mathematics
  • N. Anitha Department of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.
  • K. Tamilvanan Department of Mathematics, Periyar University PG Extension centre, Dharmapuri-636 701, Tamil Nadu, India.
  • Pages: 587-591
  • Date Published: 01-07-2017
  • Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)

N. Anitha and K. Arjunan, Homomorphism in Intuitionistic Fuzzy Subhemiring of a Hemiring, International Journal of Mathematical Science & Engg.Appls, Vol.4(v); 165-172,2010.

N. Anitha, Intuitionistic Q-Fuzzy Subhemiring of a Hemiring, International Journal on Engineering Technology and Sciences, Vol.II, 70-73,2015.

N. Anitha, Level set of Intuitionistic Fuzzy Subhemiring of a Hemiring, International Journal on Engineering Technology and Sciences, Vol.II, 124-128,2015.

Asok kumer Ray, On Product of Fuzzy Subgroups, Fuzzy Sets and Systems, 105; 181-183, 1999. DOI: https://doi.org/10.1016/S0165-0114(98)00411-4

K. T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, Vol.20 (1); 87-96,1986. DOI: https://doi.org/10.1016/S0165-0114(86)80034-3

R. Biswas, Fuzzy Subgroups and Anti-Fuzzy Subgroups, Fuzzy Sets and Systems, 35; 121-124, 1990. DOI: https://doi.org/10.1016/0165-0114(90)90025-2

T. K. Dutta, S. Kar, On Prime ideals and Prime Radical of Ternary Semiring, Bull. Calcutta Math. Soc., 97, No.5; 445-454, 2005.

R. D. Giri and B. R. Chide, Prime Radical in Ternary Hemirings, International Journal of Pure and Applied Mathematics, Vol.95 (5), 631-647, 2014. DOI: https://doi.org/10.12732/ijpam.v94i5.1

W. G. Lister, Ternary Rings, Trans. Amer. Math. Soc., 154; 37-55, 1971. DOI: https://doi.org/10.1090/S0002-9947-1971-0272835-6

N. Palaniappan and R. Muthuraj, The Homomorphism, Anti-Homomorphism of a Fuzzy and An Anti-Fuzzy Groups, Varahmihir Journal of Mathematical Sciences, Vol.4 (2); 387–399, 2004.

N. Palaniappan and K. Arjunan, The Homomorphism, Anti-Homomorphism of a Fuzzy and An Anti-Fuzzy Ideals, Varahmihir Journal of Mathematical Sciences, Vol.6 (1), 181–188, 2006.

N. Palaniappan and K. Arjunan, Some Properties of Intuitionistic Fuzzy Subgroups, ActaCiencia India, Vol.XXXIII (2); 321-328, 2007.

Rajesh Kumar, Fuzzy Algebra, University of Delhi Publication Division, Volume 1,1993.

A. Solairaju and R. Nagarajan, A New Structure and Construction of $Q$-Fuzzy Groups, Advances in Fuzzy Mathematics, Vol.4 (1); 23-29, 2009.

W. B. Vasantha Kandasamy, Smarandache Fuzzy Algebra, American Research Press, Rehoboth, 2003.

L.A. Zadeh, Fuzzy Sets, Information and Control, Vol.8; 338-353, 1965. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

  • NA

Metrics

Metrics Loading ...

Published

01-07-2017

How to Cite

N. Anitha, and K. Tamilvanan. “Intuitionistic Q-Fuzzy Ternary Subhemiring of a Hemiring”. Malaya Journal of Matematik, vol. 5, no. 03, July 2017, pp. 587-91, doi:10.26637/mjm503/015.