Theorems on oscillatory and asymptotic behavior of second order nonlinear neutral difference equations
Downloads
DOI:
https://doi.org/10.26637/MJM0504/0002Abstract
In this paper, we discuss a class of second order neutral delay difference equation of the form
$$
\Delta\left[r(n)|\Delta z(n)|^{\alpha-1} \Delta z(n)\right]+q(n) f(x(n-\sigma))=0 ; \quad n \geq n_0
$$
where $z(n)=x(n)-p(n) x(n-\tau)$. We determine sufficient conditions under which every solution of the given system is either oscillatory or tends to zero. Our results improve a number of related results reported in the literature.
Keywords:
Oscillation, nonoscillation, asymptotic behavior, neutral, second order, difference equationMathematics Subject Classification:
Mathematics- Pages: 619-624
- Date Published: 01-10-2017
- Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
R. P. Agarwal, Difference Equations and Inequalities: Theory, Methods and Applications, Marcel Dekker, New York, 1999.
I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.
D. A. Georgiu , E. A. Grove and G. Ladas, Oscillations of neutral difference equations, Appl. Anal., 33(1989), 234-253.
J. R. Graef and P. W. Spikes, Asymptotic decay of oscillatory solutions of forced nonlinear difference equations, Dyn. Syst. Appl., 3(1994), 95-102.
G. H. Hardy, J. E Little wood and G. Polya, Inequalities, The print of the 1952 edition, Cambridge University Press, Cambridge, UK, 1988.
J. W. Hooker and W. T. Patula, A second order nonlinear difference equation: Oscillation and asymptotic behaviour, J. Math. Anal. Appl., 91(1983), 9-29.
V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical methods and Applications, Academic press, New York, 1988.
G. Ladas, Ch. G. Philos and Y.G. Cas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation, 2(1989), 101-112.
B. S. Lalli and B. G. Zhang, On existence of positive solutions and bounded oscillations for neutral difference equations, J. Math. Anal. Appl., 166(1992), 272-287.
T. Li and Y. V. Rogovchenko, Oscillation theorems for second - order nonlinear neutral delay differential equations, Abstr. Appl. Anal., Vol. 2014, Article ID 594190.
H. J. Li and C. C. Yeh, Oscillation criteria for secondorder neutral delay difference equations, Comput. Math. Appl., 36(1998), 123-132.
W. T. Li and S. S. Cheng, Oscillation criteria for a nonlinear difference equation, Comput. Math. Appl., 36(8)(1998), 87-94.
A. Murugesan and K. Ammamuthu, Conditions for oscillation and convergence of solutions to second order neutral delay difference equations with variable coefficients, Malaya J. Mat., 5(2)(2017), 367-377.
S. H. Saker and S. S. Cheng, Oscillation criteria for difference equations with damping terms, Appl. Math. Comput., 148(2004), 421-442.
A. Sternal and B. Szmanda, Asymptotic and oscillatory behaviour of certain difference equations, LEMATEMATICHE, (1996), 77-86.
Z. Szafranski and B. Szmanda, A note on the oscillation of some difference equations, Fasc. Math., 21 (1990), 57-63.
Z. Szafranski and B. Szmanda, Oscillations of some linear difference equations, Fasc. Math., 25(1995), 165-174.
B. Szmanda, Note on the behaviour of solutions of a second order nonlinear difference equation, Atti. Acad. Naz. Lincei, Rend. Sci. Fiz. Mat., 69(1980), 120-125.
B. Szmanda, Characterization of oscillation of second order nonlinear difference equations, Bull. Polish. Acad. Sci. Math., 34(1986), 133-141.
B. Szmanda, Oscillatory behaviour of certain difference equations, Fasc. Math., 21(1990), 65-78.
E. Thandapani and K. Mahalingam, Necessary and sufficient conditions for oscillation of second order neutral difference equations, Tamkang J. Math., 34(2)(2003), 137–145.
E. Thandapani, Asymptotic and oscillatory behaviour of solutions on nonlinear second order difference equations, Indian J. Pure Appl. Math., 24(1993), 365- 372.
E. Thandapani, Asymptotic and oscillatory behaviour of solutions of a second order nonlinear neutral delay difference equation, Riv. Mat. Univ. Parma, (5)(1)(1992), $105-113$.
B. G. Zhang and S. S. Cheng, Oscillation criteria and comparison theorems for delay difference equations, Fasc. Math., 25(1995), 13-32.
- NA
Similar Articles
- N. Anitha, K. Tamilvanan, Intuitionistic Q-fuzzy ternary subhemiring of a hemiring , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.