On strong domination number of corona related graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0504/0004Abstract
Let $G=(V(G), E(G))$ be a graph and $u v \in E(G)$ be an edge. A vertex $u$ strongly dominates $v$ if $d_G(u) \geq d_G(v)$. A set $S \subseteq V(G)$ is a strong dominating set (sd-set) if every vertex $v \in V(G)-S$ is strongly dominated by some $u$ in $S$. The minimum cardinality of a strong dominating set is called the strong domination number of $G$ which is denoted by $\gamma_{s t}(G)$. We investigate strong domination number of some corona related graphs.
Keywords:
Dominating set, domination number, strong dominating set, strong domination numberMathematics Subject Classification:
Mathematics- Pages: 636-640
- Date Published: 01-10-2017
- Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
R. Bhat, S. Kamath and Surekha, A bound on weak domination number using strong (weak) degree concepts in graphs, Journal of International Academy of Physical Sciences, 15 (2011), 303-317.
R. Boutrig and $mathrm{M}$. Chellali, A note on a relation between the weak and strong domination numbers of a graph,Opuscula Mathematica, 32(2012), 235-238.
R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math., 4(1970), 322-325.
N. Gani and M. Ahamed, Strong and weak domination in fuzzy graphs, East Asian Math. J., 23(2007), 1-8.
C. E. Go and S. R. Canoy, Domination in the corona and join of graphs, International Mathematical Forum, $6(2011), 763-771$.
I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 35(2011), 493-500.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
Y. Hou and W, -C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra, 20(2010), 586-594.
N. Meena, A. Subramanian and V. Swaminathan, Strong efficient domination in graphs, International Journal of Innovative Science, Engineering & Technology, 1(4)(2014), 172-177.
D. Rautenbach, Bounds on the strong domination number, Discrete Mathematics, 215(2000), 201-212.
D. Rautenbach, The influence of special vertices on the strong domination, Discrete Mathematics, 197/198(1999), 683-690.
D. Rautenbach and V. Zverovich, Perfect graphs of strong domination and independent strong domination, Discrete Mathematics, 226(2001), 297-311.
E. Sampathkumar and L. Pushpa Latha, Strong weak domination and domination balance in a graph, Discrete Mathematics, 161(1996), 235-242.
E. Sampathkumar and H. B. Walikar, On the splitting graph of a graph, Karnatak Uni. j. Sci., 35 & 36(19801981), 13-16.
V. Swaminathan and P. Thangaraju, Strong and weak domination in graphs, Electronic Notes in Discrete mathematics, 15(2003), 213-215.
S. K. Vaidya and S. H. Karkar, On strong domination number of graphs, Applications and Applied Mathematics, $10(1)(2017), 604-612$.
S. K. Vaidya and S. H. Karkar, Strong domination number of some path related graphs, International Journal of Mathematics and Soft Computing, 7(1)(2017), 109-116.
S. K. Vaidya and R. N. Mehta, Strong domination and $mathrm{m}$ - splitting in graphs, (communicated).
S. K. Vaidya and R. N. Mehta, Strong domination number of some wheel related graphs, International Journal of Mathematics and Soft Computing, 7(2)(2017), 81-89.
D. B. West, Introduction to graph theory, 2/e, Prentice Hall of India, New Delhi, 2003.
- NA
Similar Articles
- A. Murugesan, K. Venkataramanan, Theorems on oscillatory and asymptotic behavior of second order nonlinear neutral difference equations , Malaya Journal of Matematik: Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.