On strong domination number of corona related graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0504/0004Abstract
Let $G=(V(G), E(G))$ be a graph and $u v \in E(G)$ be an edge. A vertex $u$ strongly dominates $v$ if $d_G(u) \geq d_G(v)$. A set $S \subseteq V(G)$ is a strong dominating set (sd-set) if every vertex $v \in V(G)-S$ is strongly dominated by some $u$ in $S$. The minimum cardinality of a strong dominating set is called the strong domination number of $G$ which is denoted by $\gamma_{s t}(G)$. We investigate strong domination number of some corona related graphs.
Keywords:
Dominating set, domination number, strong dominating set, strong domination numberMathematics Subject Classification:
Mathematics- Pages: 636-640
- Date Published: 01-10-2017
- Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
R. Bhat, S. Kamath and Surekha, A bound on weak domination number using strong (weak) degree concepts in graphs, Journal of International Academy of Physical Sciences, 15 (2011), 303-317.
R. Boutrig and $mathrm{M}$. Chellali, A note on a relation between the weak and strong domination numbers of a graph,Opuscula Mathematica, 32(2012), 235-238.
R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math., 4(1970), 322-325.
N. Gani and M. Ahamed, Strong and weak domination in fuzzy graphs, East Asian Math. J., 23(2007), 1-8.
C. E. Go and S. R. Canoy, Domination in the corona and join of graphs, International Mathematical Forum, $6(2011), 763-771$.
I. Gopalapillai, The spectrum of neighborhood corona of graphs, Kragujevac J. Math., 35(2011), 493-500.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
Y. Hou and W, -C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra, 20(2010), 586-594.
N. Meena, A. Subramanian and V. Swaminathan, Strong efficient domination in graphs, International Journal of Innovative Science, Engineering & Technology, 1(4)(2014), 172-177.
D. Rautenbach, Bounds on the strong domination number, Discrete Mathematics, 215(2000), 201-212.
D. Rautenbach, The influence of special vertices on the strong domination, Discrete Mathematics, 197/198(1999), 683-690.
D. Rautenbach and V. Zverovich, Perfect graphs of strong domination and independent strong domination, Discrete Mathematics, 226(2001), 297-311.
E. Sampathkumar and L. Pushpa Latha, Strong weak domination and domination balance in a graph, Discrete Mathematics, 161(1996), 235-242.
E. Sampathkumar and H. B. Walikar, On the splitting graph of a graph, Karnatak Uni. j. Sci., 35 & 36(19801981), 13-16.
V. Swaminathan and P. Thangaraju, Strong and weak domination in graphs, Electronic Notes in Discrete mathematics, 15(2003), 213-215.
S. K. Vaidya and S. H. Karkar, On strong domination number of graphs, Applications and Applied Mathematics, $10(1)(2017), 604-612$.
S. K. Vaidya and S. H. Karkar, Strong domination number of some path related graphs, International Journal of Mathematics and Soft Computing, 7(1)(2017), 109-116.
S. K. Vaidya and R. N. Mehta, Strong domination and $mathrm{m}$ - splitting in graphs, (communicated).
S. K. Vaidya and R. N. Mehta, Strong domination number of some wheel related graphs, International Journal of Mathematics and Soft Computing, 7(2)(2017), 81-89.
D. B. West, Introduction to graph theory, 2/e, Prentice Hall of India, New Delhi, 2003.
- NA
Similar Articles
- A. Murugesan, K. Venkataramanan, Theorems on oscillatory and asymptotic behavior of second order nonlinear neutral difference equations , Malaya Journal of Matematik: Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution 4.0 International License.