Random variable inequalities involving (k,s)-integration
Downloads
DOI:
https://doi.org/10.26637/MJM0504/0005Abstract
In this paper, we use the (k,s)− Riemann-Liouville operator to establish new results on integral inequalities by using fractional moments of continuous random variables.
Keywords:
(k,s)− Riemann-Liouville integral, random variable, (k,s)− fractional expectation, (k,s)− fractional variance, (k,s)−fractional momentMathematics Subject Classification:
Mathematics- Pages: 641-646
- Date Published: 01-10-2017
- Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
A. Akkurt, Z. Kaçar, H. Yildirim, Generalized fractional integral inequalities for continuous random variables, Journal of Probability and Statistics. Vol 2015. Article ID $958980,(2015), 1-7$.
K. Boukerrioua T. Chiheb and B. Meftah , Fractional hermite hadamard type inequalities for functions whose second derivative are $(s, r)$-convex in the second sense. Kragujevac. J. Math. 40(2) (2016), 72-191.
[.Z. Darhbpani, Fractional integral inequalities for continuous random variables, Malaya J. Math. 2(2), (2014), 172-179.
Z. Dahmani, New applications of fractional calculus on probabilistic random variables. Acta Math. Univ. Come$(3,26)^{text {nianae. } 86(2) ~(2016), ~ 1-9 . ~}$
Z. Dahmani, New classes of integral inequalities of fractional order, Le Matematiche 69(1) (2014), 227-235.
Z. Dahmani, A.E. Bouziane, M. Houas and M. Z. Sarikaya, New $W$-weighted concepts for continuous random variables with applications, Note di Matematica. accepted, (2017).
M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators. SCIENTIA, Series A : Mathematical Science. 27 (2016), 87-97.
M. Houas, Some new Saigo fractional integral inequalities in quantum calculus. Facta Universitatis (NIS) Ser. Math. Inform. 31(4) (2016), 761-773.
P. Kumar, Inequalities involving moments of a continuous random variable defined over a finite interval. Computers and Mathematics with Applications, 48, (2004), 257-273.
P. Kumar, The Ostrowski type moment integral inequalities and moment-bounds for continuous random variables. Comput. Math. Appl. 49 (2005), 1929-1940.
V. Lakshmikantham and A. S. Vatsala, Theory of fractional differential inequalities and applications, Commun. Appl. Anal. 11 (2007), no. 3-4, 395-402.
Z. Liu, Some Ostrowski-Gr"uss type inequalities and (3.28) lications. Comput. Math. Appl. 53 (2007), no. 1, $73-$ 79.
S. Mubeen, $k$-Fractional Integrals and Application. Int. J. Contemp. Math. Sciences. 7(2) (2012), 89-94.
M. Z. Sarikaya, Z. Dahmani, M.E. Kiris and F. Ahmad, $(k, s)$-Riemann-Liouville fractional integral and applications.Hacet J.Math.Stat.45(1) (2016), 1-13.
M. 7.29 Sarikaya and A. Karaca, On the $k$-Riemann-Liouville fractional integral and applications. International Journal of Statistics and Mathematics. 1(3) (2014), 033-043.
M. Z. Sarikaya, S. Erden, New weighted integral inequalities for twice differentiable convex functions. Kragujevac. J. Math $40(1)(2016), 15-33$.
M. Tomar, S. Maden, E. Set, $(k, s)$-Riemann-Liouville fractional integral inequalities for continuous random variables. Arab. J. Math. 6 (2017), 55-63.
- NA
Similar Articles
- Naas Adjimi , Maamar Benbachir, Kaddour Guerbati , Existence results for \(\psi\)-Caputo hybrid fractional integro-differential equations , Malaya Journal of Matematik: Vol. 9 No. 02 (2021): Malaya Journal of Matematik (MJM)
- Vikram Singh, Dwijendra N Pandey, Existence results for multi-term time-fractional impulsive differential equations with fractional order boundary conditions , Malaya Journal of Matematik: Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.