Approximation of common fixed points of finite family of nonexpansive and asymptotically generalized \(\Phi\)-hemicontractive mappings
Downloads
DOI:
https://doi.org/10.26637/mjm0903/002Abstract
In this paper, we propose a modified hybrid \(S\)-iteration scheme for finite family of nonexpansive and asymptotically generalized \(\Phi\)--hemicontractive mappings in the frame work of real Banach spaces. We remark that the iteration process of Kang et al. \cite{Kang1} can be obtained as a special case of our iteration process. A different approach is used to obtain our result and the necessity of condition (C3) is not required to prove our strong convergence theorem. Our result mainly extends and complements the result of \cite{Kang1} and several other related results in the literature.
Keywords:
Fixed point, Banach space, hybrid \(S\)-iteration process, nonexpansive mapping, asymptotically generalized \(\Phi\)-hemicontractive mappingMathematics Subject Classification:
53C40 , 53C50- Pages: 72-82
- Date Published: 01-07-2021
- Vol. 9 No. 03 (2021): Malaya Journal of Matematik (MJM)
Y. A. Alber, C. E. ChIdume And H. Zegeye, Regularization of nonlinear ill-posed equations with accretive operators, Fixed Point Theory and Applications, 1(2005), 11-33.
R. P. ARgaWal, D. O' REgAN And D. R. SAHU, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex. Anal., 8(1)(2007), 61-79.
S. S. CHANG, Some results for asymptotically pseudocontractive mappings and asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 129(2001), 845-853.
C. E. Chidume and C. O. Chidume, Convergence theorems for fixed points of uniformly continuous generalized $Phi$-hemi-contractive mappings, J. Math. Anal. Appl., 303(2005), 545-554.
C. E. Chidume, A. U. Bello, M. E. Okpala and P. Ndambomve, Strong convergence theorem for fixed points of nearly nniformly L-Lipschitzian Asymptotically Generalized $Phi$-hemicontractive mappings, International Journal of Mathematical Analysis, 9(52)(2015), 2555-2569.
C. E. Chidume, C. O. Chidume, Convergence theorem for zeros of generalized Lipschitz generalized phiquasi-accretive operators, Proc. Amer. Math. Soc., 134(2006), 243-251.
G. Das and J. P. Debata, Fixed points of Quasi-nonexpansive mappings, Indian J. Pure. Appl. Math., 17(1986), 1263-1269.
L. C. Deng, P. Cubiotti And J. C. Yao, Approximation of common fixed points of families of nonexpansive mappings, Taiwanese J. Math., 12(2008), 487-500.
L. C. Deng, P. Cubiotti And J. C. Yao, An implicit iteration scheme for monotone variational inequalities and fixed point problems, Nonlinear Anal., 69(2008), 2445-2457.
L. C. Deng, S. Schaible And J. C. YAO, Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings, J. Optim. Theory Appl., 139(2008), 403-418.
S. Gopinath1, J. GnanaraJ, and S. Lalithambigai, Strong convergence for hybrid S-iteration scheme of nonexpansive and and asymptotically demicontractive mappings, International Journal of Pure and Applied Mathematics, 110(1)(2016), 153-163.
F. Gu, Convergence theorems for $phi$-pseudocontractive type mappings in normed linear spaces, Northeast Math. J., 17(3)(2001), 340-346.
F. Gu, Strong convergence of an implicit iteration process for a finite family of uniformly $L$-Lipschitzian mapping in Banach spaces, Journal of Inequalities and Applications, doi:10.1155/2010/801961.
S. M. Kang, A. RafiQ, And Y. C. Kwun, Strong convergence for hybrid S-Iteration scheme, Journal of Applied Mathematics, 4(2013), Article ID 705814.
S. H. Khan and W. TaKahashi, Approximating common fixed points of two asymptotically nonexpansive mappings, Sci. Math. Jpn., 53(1)(2001), 143-148.
S. H. Khan, Y.J. Cho and M. Abbas, Convergence to common fixed points by a modified iteration process, Journal of Appl. Math. and Comput., doi: 10.1007/s12190-010-0381-z.
S. H. Khan And I. YILdirima And M. OZdemir, Some results for finite families of uniformly $L$-Lipschitzian mappings in Banach paces, Thai Journal of Mathematics, 9(2)(2011), 319-331.
J. K. KIM, D. R. SAHU AND Y. M. Nam, Convergence theorem for fixed points of nearly uniformly $L$-Lipschitzian asymptotically generalized $Phi$-hemicontractive mappings, Nonlinear Analysis: Theory, Methods and Applications, 71(2009), 2833-2838.
M. A. KrasnoselkiI, Two remarks on the methods of successive approximations, Uspekhi Math. Nauk., 10(1955), 123-127.
G. Lv, A. RAFIQ AND Z. XUE, Implicit iteration scheme for two phi-hemicontractive operators in arbitrary Banach spaces, Journal of Inequalities and Applications, 521(2013) http://www.journalofinequalitiesandapplications.com/content/2013/1/521.
M. O. Osilike, Iterative solution of nonlinear equations of the $phi$-strongly accretive type, J. Math. Anal. Appl., 200(1996), 259-271.
D. R. SAHU, Approximations of the $S$-iteration process to constrained minimization problems and split feasibility problems, Fixed Point Theory, 12(1)(2011), 187-204.
D. R. Sahu And A. Petrusel, Strong convergence of iterative methods by strictly pseudocontractive mappings in Banach spaces, Nonlinear Analysis Theory Methods and Applications, 74(17)(2011), 60126023 .
W. TAKAHASHI, Iterative methods for approximation of fixed points and their applications, J. Oper. Res. Soc. Jpn., 43(1)(2000), 87-108.
W. TAKAhAShi and T. TAmura, Limit theorems of operators by convex combinations of nonexpansive retractions in Banach spaces, J. Approx. Theory , 91(3)(1997), 386-397.
B. S. Thakur, Strong Convergence for Asymptotically generalized $Phi$-hemicontractive mappings, $R O M A I$ J., 8(1)(2012), 165-171.
J. SCHU, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43(1)(1991), 153-159.
K. K. TAN And H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 122(1994), 733-739.
X. Weng, Fixed point iteration for local strictly pseudocontractive mapping, Proceedings of the American Mathematical Society, 113(2)(1991), 727-731.
L. P. Yang, Convergence theorem of an implicit iteration process for asymptotically pseudocontractive mappings, Bull. of the Iran. Math. Soc., 38(3)(2012), 699-713.
- NA
Similar Articles
- Bapurao Dhage, Nonlinear partial completely continuous operators in a partially ordered Banach space and nonlinear hyperbolic partial differential equations , Malaya Journal of Matematik: Vol. 12 No. 04 (2024): Malaya Journal of Matematik (MJM)
- Austine Efut Ofem, Strong convergence of modified implicit hybrid S-iteration scheme for finite family of nonexpansive and asymptotically generalized \(\Phi\)-hemicontractive mappings , Malaya Journal of Matematik: Vol. 8 No. 04 (2020): Malaya Journal of Matematik (MJM)
- Janhavi B. Dhage, Shyam Dhage, Bapurao Dhage, Approximation results for PBVPs of nonlinear first order ordinary functional differential equations in a closed subset of the Banach space , Malaya Journal of Matematik: Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mfon Udo
This work is licensed under a Creative Commons Attribution 4.0 International License.