Common random fixed point results with application to a system of nonlinear integral equations

Downloads

DOI:

https://doi.org/10.26637/MJM0504/0009

Abstract

In this paper, we prove a common random fixed point theorem for two pair of weakly compatible mappings in separable Banach spaces. A corollary of the theorem is obtained and an example is given to verify this corollary. An application is given to obtain the existence and unique solution of system of random nonlinear integral equations.

Keywords:

Random fixed point, random weakly compatible mappings, random nonlinear integral equations

Mathematics Subject Classification:

Mathematics
  • R. A. Rashwan Department of Mathematics, Faculty of Science, Assuit University, Assuit 71516, Egypt.
  • H. A. Hammad Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt. https://orcid.org/0000-0001-8724-9367
  • L. Guran Department of Pharmaceutical Sciences, ”Vasile Goldi s¸ ” Western University of Arad, Revolu t ¸ iei Avenue, no. 94-96, 310025, Arad, Roumania.
  • Pages: 667-674
  • Date Published: 01-10-2017
  • Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)

[I] R. F. Arens, A topology for spaces of transfomations, Amais Math., 47(2) (1946). $480-495$.

L. Beg, Random fixed points of random operators satisfying semicontractivity conditions, Math. Saponica, $46(1997), 151-155$.

1. Beg, Approximation of random fixed points in normed spaces, Noulinear Anal. $51(2002), 1363-1372$.

V. Berinde, Approximating fixed points of weak contractions using Picard iteration. Nonlinear Anal. Formm, 9 (1) $(2004), 43-53$

A. T. Bharacha-Reid, Random Integral equations, Mathematies an Science and Engincering, 96, Academic Press, New York, 1972.

A. T. Bharucha-Reid. Fixed point theorems in probabilistic analysis, Bull Amer. Math. Soc. 82(5) (1976), $641-657$.

$mathrm{O}$. Hans, Reduzierende zufalligetransformationen, Crechosion. Math. J., 7(82) (1957), 154-158.

S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, $J$. Math. Anal. Appl., 67(2) (1979), 261-273.

M. C. Joshi and R. K. Bose, Some topics in nonlinear functional analysis, Wiley Eastern Ltd., New Delhi, $(1984)$

A. C. H. Lee and W. J. Padgett, On random nonlinear contraction, Math. Systems Theory, ii (1977), 77-84.

A. Mukherjee, Transformation aleatoires separable theorem all point fixed aleatoire, C. R. Acad. Sci. Paris, Ser. $A-B, 263$ (1966), 393-395.

W. J. Padgett, On a nonlinear stochastic integral equation of the Hammerstein type, Proc. Amer. Math. Soc., 38(1) (1973), 625-631.

N. S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer: Math. Soc., 97 (1986), 507-514.

N. S. Papageorgiou, On measurable multifunctions with stochastic domain, J. Australian Math. Soc., 45 (1988), 204-216.

H. K. Pathak, S. N. Mishra and A. K. Kalinde, Common fixed point theorems with applications to nonlinear integral equations, Demonstratio math., XXXII (3), (1999), 547-564.

Smriti Mehta, A. D. Singh and Vanita Ben Dhagat, Fixed point theorems for weak contraction in cone random metric spaces, Bull. Calcutta Math. Soc., 103 (4) (2011), 303-310.

R. A. Rashwan and D. M. Albaqeri, A common random fixed point theorem and application to random integral equations, Int. J. Appl. Math. Reser, 3(1) (2014), 71-80.

R. A. Rashwan and H. A. Hammad, Random fixed point theorems with an application to a random nonlinear integral equation, Journal of Linear and Topological Algebra, 5(2) (2016), 119-133.

R. A. Rashwan and H. A. Hammad, Random common fixed point theorem for random weakly subsequentially continuous generalized contractions with application, Int. J. Pure Appl. Math., 109(4) (2016), 813*-826.

E. Rothe, Zur theorie der topologische ordnung und der vektorfelder in Banachschen Rau-men, Composito Math., 5 (1937), 177-197.

M. Saha and A. Ganguly, Random fixed point theorem on a Ćirić-type contractive mapping and its consequence, Fixed Point Theory and Appl., 2012 (2012), 1-18.

M. Saha and D. Dey, Some random fixed point theorems for $(theta, L)$-weak contractions, Hacett. J. Math. Statist., 41(6) (2012), 795-812.

G. S. Saluja and M. P. Tripathi, Some common random fixed point theorems for contractive type conditions in cone random metric spaces, Acta. Univ. Sapientiae Math., 8(1) (2016), 174-190.

V. M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc., 90(1) (1984), 425-429.

A. Špaček, Zufăllige Gleichungen, Czechoslovak Math. J., 5(80) (1955), 462-466.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2017

How to Cite

R. A. Rashwan, H. A. Hammad, and L. Guran. “Common Random Fixed Point Results With Application to a System of Nonlinear Integral Equations”. Malaya Journal of Matematik, vol. 5, no. 04, Oct. 2017, pp. 667-74, doi:10.26637/MJM0504/0009.