α-Stable necks of fuzzy automata
Downloads
DOI:
https://doi.org/10.26637/MJM0504/0013Abstract
In this paper we introduce α -stable necks, α -stable directable, α -stable trap-directable fuzzy automata. Further we show that α -stable necks of fuzzy automaton exists then it is α -stable subautomaton, α -stable kernel and discuss some of their properties. Finally we prove a fuzzy automaton is α -stable directable if and only if it is an extension of a α-stable strongly directable fuzzy automaton by a α-stable trap-directable fuzzy automaton.
Keywords:
α-stable necks, α-stable directable, α-stable trap-directableMathematics Subject Classification:
Mathematics- Pages: 694-697
- Date Published: 01-10-2017
- Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
M. Bogdanovic, S. Bogdanovic, M. Ciric, and T. Petkovic, Necks of automata, Novi Sad J. Math. 34 (2) (2004), 5-15.
M. Bogdanovic, B. Imreh, M. Ciric, and T. Petkovic, Directable automata and their generalization (A survey), Novi Sad J. Math., 29 (2) (1999), 31-74.
S. Bogdanovic, M. Ciric, and T. Petkovic, Directable automata and transition semigroups, Acta Cybernetica(Szeged), 13 (1998), 385-403.
V. Karthikeyan, and M. Rajasekar, Necks of fuzzy automata, Proceedings of International Conference on Mathematical Modeling and Applied Soft Computing, Shanga Verlag, July 11-13, (2012), 15-20.
V. Karthikeyan, and M. Rajasekar, $gamma$-Synchronized fuzzy automata and their applications, Annals of Fuzzy Mathematics and Informatics, 10 (2) (2015), 331-342.
J. N. Mordeson, and D. S. Malik, Fuzzy automata and languages-theory and applications, Chapman & Hall CRC Press, (2002). DOI: https://doi.org/10.1201/9781420035643
W. G. Wee, On generalizations of adaptive algorithms and application of the fuzzy sets concepts to pattern classification Ph.D. Thesis, Purdue University, (1967).
L. A. Zadeh, Fuzzy sets, Information and Control, 8 (3) (1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X
- NA
Similar Articles
- Bapurao C. Dhage, Dhage iteration method in the theory of IVPs of nonlinear first order functional differential equations , Malaya Journal of Matematik: Vol. 5 No. 04 (2017): Malaya Journal of Matematik (MJM)
- Janhavi B. Dhage, Shyam Dhage, Bapurao Dhage, Approximation results for PBVPs of nonlinear first order ordinary functional differential equations in a closed subset of the Banach space , Malaya Journal of Matematik: Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
- Bapurao C. Dhage, Dhage iteration method for approximating positive solutions of quadratic functional differential equations , Malaya Journal of Matematik: Vol. 6 No. 01 (2018): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2017 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.