On the asymptotic behavior of a size-structured model arising in population dynamics

Size-structured model arising in population dynamics

Downloads

DOI:

https://doi.org/10.26637/mjm11S/007

Abstract

We study the asymptotic behavior of a semilinear size-structured population model with delay when the nonlinearity is small in some sense. The novelty in this work is that the operator governing the linear part of the equation does not generate a compact semigroup unlike in the results present in literature. In such a case the spectrum does not consist wholly of eigenvalues but also has a non-trivial component called Browder’s essential spectrum. To overcome the lack of compactness, we give a localization of Browder’s essential spectrum of the operator governing the linear part and we use the Perron-Frobenius spectral analysis adapted to semigroups of positive operators in Banach lattices to investigate the long time behavior of the system.

Keywords:

Perron-Frobenius, positive operators, structured population models, Browder’s essential spectrum, asymptotic behavior, semigroups of operators

Mathematics Subject Classification:

35B40, 35R10, 47D06
  • Nadia Drisi Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P. 2390, Marrakesh, Morocco,
  • Brahim Es-sebbar Université Cadi Ayyad, Faculté des Sciences et Techniques Guéliz, Département de Mathématiques, B.P. 549, Marrakesh, Morocco
  • Ezzinbi Khalil Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P. 2390, Marrakesh, Morocco,
  • Samir Fatajou Université Cadi Ayyad, Faculté des Sciences Semlalia, Département de Mathématiques, B.P. 2390, Marrakesh, Morocco,
  • Pages: 92-114
  • Date Published: 01-10-2023
  • Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday

M. A DIMY AND K. E ZZINBI , A class of linear partial neutral functional differential equations with

nondense domain, Journal of Differential equations, 147 (1998), 285–332. DOI: https://doi.org/10.1006/jdeq.1998.3446

W. A RENDT , A. G RABOSCH , G. G REINER , U. M OUSTAKAS , R. N AGEL , U. S CHLOTTERBECK ,

U. G ROH , H. P. L OTZ , AND F. N EUBRANDER , One-parameter Semigroups of Positive Operators,

vol. 1184, Springer, 1986.

L. B ARREIRA AND C. V ALLS , Nonautonomous equations with arbitrary growth rates: A Perron-type

theorem, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 6203–6215. DOI: https://doi.org/10.1016/j.na.2012.06.027

L. B ARREIRA AND C. V ALLS , A Perron-type theorem for nonautonomous differential equations, Journal of Differential Equations, 258 (2015), 339–361. DOI: https://doi.org/10.1016/j.jde.2014.09.012

A. B´ ATKAI AND S. P IAZZERA , Semigroups for Delay Equations, A K Peters, Ltd., Wellesley,

Massachusetts, 2005.

F. E. B ROWDER , On the spectral theory of elliptic differential operators. I, Mathematische Annalen,

(1961), 22–130.

T. A. B URTON , Perron-type stability theorems for neutral equations, Nonlinear Analysis: Theory, Methods

& Applications, 55(2003), 285–297. DOI: https://doi.org/10.1016/S0362-546X(03)00240-2

E. A. C ODDINGTON AND N. L EVINSON , Theory of Ordinary Differential Equations, Tata McGraw-Hill

Education, 1955.

W. A. C OPPEL , Stability and Asymptotic Behavior of Differential Equations, Heath Boston, 1965.

O. D IEKMANN , S. A. V AN G ILS , S. M. V. L UNEL , AND H. O. W ALTHER , Delay Equations: Functional,

Complex, and Nonlinear Analysis, Springer-Verlag, 1995. https://doi.org/10.1007/978-1-4612-4206-2 DOI: https://doi.org/10.1007/978-1-4612-4206-2

M. S. P. E ASTHAM , The Asymptotic Solution of Linear Differential Systems: Application of The Levinson

Theorem, Oxford University Press, USA, 1989.

K. J. E NGEL AND R. N AGEL , One-parameter Semigroups for Linear Evolution Equations, vol. 194,

Springer Science & Business Media, 2000. https://doi.org/10.1007/b97696 DOI: https://doi.org/10.1007/b97696

K. G OPALSAMY , Equations of Mathematical Ecology, Kluwer A.P., Dordrecht, 1992.

G. G REINER , Infinite-Dimensional Systems: ”A typical Perron-Frobenius theorem with applications to an

age-dependent population equation”, Springer Berlin Heidelberg, 1984, 86–100.

J. K. H ALE , Linear functional-differential equations with constant coefficients, Contr. t Diff. Eqs., 2 (1964), DOI: https://doi.org/10.21236/AD0615806

-317, Contributions to Differential Equations, 2 (1963), 291–317.

J. K. H ALE AND S. M. V. L UNEL , Introduction to Functional Differential Equations, Springer, 1993. DOI: https://doi.org/10.1007/978-1-4612-4342-7_3

P. H ARTMAN , Ordinary Differential Equations, Birkhaüser, Boston, 1982.

Y. H INO , S. M URAKAMI , AND T. N AITO , Functional Differential Equations with Infinite Delay, vol. 1473

of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.

G. E. H UTCHINSON , Circular causal systems in ecology, Annals of the New York Academy of Sciences,

(1948), 221–246.

M. I ANNELLI , Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e

Stampatori, Pisa, 1994.

N. N. K RASOVSKII , StabilityofMotion: ApplicationsofLyapunov’sSecondMethodtoDifferentialSystems

and Equations with Delay, Stanford University Press, 1963.

K. M ATSUI , H. M ATSUNAGA , AND S. M URAKAMI , Perron type theorems for functional differential

equations with infinite delay in a Banach space, Nonlinear Analysis: Theory, Methods & Applications,

(2008), 3821–3837.

H. M ATSUNAGA AND S. M URAKAMI , Asymptotic behavior of solutions of functional difference

equations, Journal of Mathematical Analysis and Applications, 305(2005), 391–410. DOI: https://doi.org/10.1016/j.jmaa.2004.10.065

J. A. M ETZ AND O. D IEKMANN , The Dynamics of Physiologically Structured Populations, Springer-

Verlag Berlin Heidelberg, 1986.

O. P ERRON , Uberstabilitätundasymptotischesverhaltender integralevondifferentialgleichungssystemen,

Mathematische Zeitschrift, 29 (1929), 129–160. DOI: https://doi.org/10.1007/BF01180524

M. P ITUK , A Perron type theorem for functional differential equations, Journal of Mathematical Analysis

and Applications, 316(2006), 24–41. DOI: https://doi.org/10.1016/j.jmaa.2005.04.027

M. P ITUK, Asymptotic behavior and oscillation of functional differential equations, Journal of Mathematical Analysis and Applications, 322(2006), 1140–1158. DOI: https://doi.org/10.1016/j.jmaa.2005.09.081

S. N. S HIMANOV , On a theory of linear differential equations with after-effect, Differencialniye

Uravnenija, 1(1965), 102–116. DOI: https://doi.org/10.1016/0926-6585(65)90207-4

C. T RAVIS AND G. F. W EBB , Existence and stability for partial functional differential equations,

Transactions of the American Mathematical Society, 200 (1974), 395–418. DOI: https://doi.org/10.1090/S0002-9947-1974-0382808-3

G. F. W EBB , Theory of Nonlinear Age-dependent Population Dynamics, CRC Press, 1985.

J. W U , Theory and Applications of Partial Functional Differential Equations, vol. 119, Springer Science &

Business Media, 2012.

K. Y OSIDA , Functional Analysis, Springer-Verlag Berlin Heidelberg New York, 1980.

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Nadia Drisi, Brahim Es-sebbar, E. Khalil, and Samir Fatajou. “On the Asymptotic Behavior of a Size-Structured Model Arising in Population Dynamics: Size-Structured Model Arising in Population Dynamics”. Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 92-114, doi:10.26637/mjm11S/007.