On the asymptotic behavior of a size-structured model arising in population dynamics
Size-structured model arising in population dynamics
Downloads
DOI:
https://doi.org/10.26637/mjm11S/007Abstract
We study the asymptotic behavior of a semilinear size-structured population model with delay when the nonlinearity is small in some sense. The novelty in this work is that the operator governing the linear part of the equation does not generate a compact semigroup unlike in the results present in literature. In such a case the spectrum does not consist wholly of eigenvalues but also has a non-trivial component called Browder’s essential spectrum. To overcome the lack of compactness, we give a localization of Browder’s essential spectrum of the operator governing the linear part and we use the Perron-Frobenius spectral analysis adapted to semigroups of positive operators in Banach lattices to investigate the long time behavior of the system.
Keywords:
Perron-Frobenius, positive operators, structured population models, Browder’s essential spectrum, asymptotic behavior, semigroups of operatorsMathematics Subject Classification:
35B40, 35R10, 47D06- Pages: 92-114
- Date Published: 01-10-2023
- Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
M. A DIMY AND K. E ZZINBI , A class of linear partial neutral functional differential equations with
nondense domain, Journal of Differential equations, 147 (1998), 285–332. DOI: https://doi.org/10.1006/jdeq.1998.3446
W. A RENDT , A. G RABOSCH , G. G REINER , U. M OUSTAKAS , R. N AGEL , U. S CHLOTTERBECK ,
U. G ROH , H. P. L OTZ , AND F. N EUBRANDER , One-parameter Semigroups of Positive Operators,
vol. 1184, Springer, 1986.
L. B ARREIRA AND C. V ALLS , Nonautonomous equations with arbitrary growth rates: A Perron-type
theorem, Nonlinear Analysis: Theory, Methods & Applications, 75 (2012), 6203–6215. DOI: https://doi.org/10.1016/j.na.2012.06.027
L. B ARREIRA AND C. V ALLS , A Perron-type theorem for nonautonomous differential equations, Journal of Differential Equations, 258 (2015), 339–361. DOI: https://doi.org/10.1016/j.jde.2014.09.012
A. B´ ATKAI AND S. P IAZZERA , Semigroups for Delay Equations, A K Peters, Ltd., Wellesley,
Massachusetts, 2005.
F. E. B ROWDER , On the spectral theory of elliptic differential operators. I, Mathematische Annalen,
(1961), 22–130.
T. A. B URTON , Perron-type stability theorems for neutral equations, Nonlinear Analysis: Theory, Methods
& Applications, 55(2003), 285–297. DOI: https://doi.org/10.1016/S0362-546X(03)00240-2
E. A. C ODDINGTON AND N. L EVINSON , Theory of Ordinary Differential Equations, Tata McGraw-Hill
Education, 1955.
W. A. C OPPEL , Stability and Asymptotic Behavior of Differential Equations, Heath Boston, 1965.
O. D IEKMANN , S. A. V AN G ILS , S. M. V. L UNEL , AND H. O. W ALTHER , Delay Equations: Functional,
Complex, and Nonlinear Analysis, Springer-Verlag, 1995. https://doi.org/10.1007/978-1-4612-4206-2 DOI: https://doi.org/10.1007/978-1-4612-4206-2
M. S. P. E ASTHAM , The Asymptotic Solution of Linear Differential Systems: Application of The Levinson
Theorem, Oxford University Press, USA, 1989.
K. J. E NGEL AND R. N AGEL , One-parameter Semigroups for Linear Evolution Equations, vol. 194,
Springer Science & Business Media, 2000. https://doi.org/10.1007/b97696 DOI: https://doi.org/10.1007/b97696
K. G OPALSAMY , Equations of Mathematical Ecology, Kluwer A.P., Dordrecht, 1992.
G. G REINER , Infinite-Dimensional Systems: ”A typical Perron-Frobenius theorem with applications to an
age-dependent population equation”, Springer Berlin Heidelberg, 1984, 86–100.
J. K. H ALE , Linear functional-differential equations with constant coefficients, Contr. t Diff. Eqs., 2 (1964), DOI: https://doi.org/10.21236/AD0615806
-317, Contributions to Differential Equations, 2 (1963), 291–317.
J. K. H ALE AND S. M. V. L UNEL , Introduction to Functional Differential Equations, Springer, 1993. DOI: https://doi.org/10.1007/978-1-4612-4342-7_3
P. H ARTMAN , Ordinary Differential Equations, Birkhaüser, Boston, 1982.
Y. H INO , S. M URAKAMI , AND T. N AITO , Functional Differential Equations with Infinite Delay, vol. 1473
of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1991.
G. E. H UTCHINSON , Circular causal systems in ecology, Annals of the New York Academy of Sciences,
(1948), 221–246.
M. I ANNELLI , Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori e
Stampatori, Pisa, 1994.
N. N. K RASOVSKII , StabilityofMotion: ApplicationsofLyapunov’sSecondMethodtoDifferentialSystems
and Equations with Delay, Stanford University Press, 1963.
K. M ATSUI , H. M ATSUNAGA , AND S. M URAKAMI , Perron type theorems for functional differential
equations with infinite delay in a Banach space, Nonlinear Analysis: Theory, Methods & Applications,
(2008), 3821–3837.
H. M ATSUNAGA AND S. M URAKAMI , Asymptotic behavior of solutions of functional difference
equations, Journal of Mathematical Analysis and Applications, 305(2005), 391–410. DOI: https://doi.org/10.1016/j.jmaa.2004.10.065
J. A. M ETZ AND O. D IEKMANN , The Dynamics of Physiologically Structured Populations, Springer-
Verlag Berlin Heidelberg, 1986.
O. P ERRON , Uberstabilitätundasymptotischesverhaltender integralevondifferentialgleichungssystemen,
Mathematische Zeitschrift, 29 (1929), 129–160. DOI: https://doi.org/10.1007/BF01180524
M. P ITUK , A Perron type theorem for functional differential equations, Journal of Mathematical Analysis
and Applications, 316(2006), 24–41. DOI: https://doi.org/10.1016/j.jmaa.2005.04.027
M. P ITUK, Asymptotic behavior and oscillation of functional differential equations, Journal of Mathematical Analysis and Applications, 322(2006), 1140–1158. DOI: https://doi.org/10.1016/j.jmaa.2005.09.081
S. N. S HIMANOV , On a theory of linear differential equations with after-effect, Differencialniye
Uravnenija, 1(1965), 102–116. DOI: https://doi.org/10.1016/0926-6585(65)90207-4
C. T RAVIS AND G. F. W EBB , Existence and stability for partial functional differential equations,
Transactions of the American Mathematical Society, 200 (1974), 395–418. DOI: https://doi.org/10.1090/S0002-9947-1974-0382808-3
G. F. W EBB , Theory of Nonlinear Age-dependent Population Dynamics, CRC Press, 1985.
J. W U , Theory and Applications of Partial Functional Differential Equations, vol. 119, Springer Science &
Business Media, 2012.
K. Y OSIDA , Functional Analysis, Springer-Verlag Berlin Heidelberg New York, 1980.
- NA
Similar Articles
- Moussa BARRO, K. Ernest BOGNINI, Théodore TAPSOBA, Combinatorics on words obtaining by \(k\) to \(k\) substitution and \(k\) to \(k\) exchange of a letter on modulo-recurrent words , Malaya Journal of Matematik: Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Nadia Drisi, Brahim Es-sebbar, Ezzinbi Khalil, Samir Fatajou
This work is licensed under a Creative Commons Attribution 4.0 International License.