Results of \(\omega\)-order reversing partial contraction mapping generating a differential operator

Downloads

DOI:

https://doi.org/10.26637/mjm0903/004

Abstract

In this paper, we presents some partial differential operators defined on suitably chosen function spaces such as \(H^{-1}(\Omega)\), \(L^{p}(\Omega)\), with \(p \in [1,+\infty)\). Laplace operator on a domain \(\Omega \in \mathbb{R}^{n}\) subject to the Dirichlet boundary condition was established by generating a \(C_{0}\)-semigroup, which is generated by an infinitesimal generator \(\omega\)-order reversing partial contraction (\(\omega\)-\(ORCP_n\)).

Keywords:

\(C_0\)-semigroup, \(C_0\)-Semigroup of contraction, Differential Operator, \(\omega-ORCP_n\)

Mathematics Subject Classification:

40A05 , 40A99, 46A70, 46A99
  • Pages: 91-98
  • Date Published: 01-07-2021
  • Vol. 9 No. 03 (2021): Malaya Journal of Matematik (MJM)

A. Y. Akinyele, O. Y. SaKa-Balogun and O. A. Adeyemo, Perturbation of infinitesimal generator in semigroup of linear operator, South East Asian J. of Mathematics and Mathematical Sciences, 15(3)(2019), 53-64.

A. Y. Akinyele, M. O. Ajisope And A. U. OhigWeren, Infinitesimal generator of mean Ergodic theorem in semigroup of linear operator, Asian Journal of Mathematics and Applications, 0550(2020), 1-9.

H. Amann, Linear and quasilinear parabolic problems, Volume I Abstract theory, Birchäuser Verlag, Basel Boston Berlin, (1995).

H. Amann, Linear parabolic problems involving measures, RA CSAM, Rev. R. Acad. Cien. Serie A. Mat., 95(2001), 85-119.

W. AREndT, Vector-valued Laplace transforms and Cauchy Problems, Israel J. Math., 59(1987), 327-351.

A. V. Balakrishnan, An Operator calculus for infinitesimal generators of Semigroup, Trans Amer. Math. Soc., 91(1959), 330-353.

S. BANACH, Surles operation dam les eusembles abstracts et lear application aus equation integrals Fund. Math., 3(1922), 133-181 .

V. BARBU, Boundary value problems for partial differential equations, Editura Academiei Romane Bucuresti, (Romanian), (1993).

O. CarJa And I. I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA, Nonlinear Differential Equations Appl.,4 (1997), 401-424.

K. RAUF AND A. Y. AKINYELE, Properties of $omega$-order preserving partial contraction mapping and its relation to $C_0$-semigroup, International Journal of Mathematics and Computer Science, 14(1) (2019), 61-68.

K. Rauf, A. Y. Akinyele, M. O. Etuk, R. O. Zubair and M. A. Aasa, Some result of stability and spectra properties on semigroup of linear operator, Advances in Pure Mathematics, 9(2019), 43-51.

I. I. Vrabie,, $C_0$-semigroup And Application, Mathematics Studies, 191, Elsevier, North-Holland, (2003).

K. Yosida, On the differentiability and representation of one-parameter semigroups of linear operators, $J$. Math. Soc., 1(1948), 15-21.

  • NA

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-07-2021

How to Cite

Akinyele, . . A. Y. . . . ., J. U. . . . . Abubakar, . K. A. . . . . . . Bello, L. . . K. . Alhassan, and . M. A. Aasa. “Results of \(\omega\)-Order Reversing Partial Contraction Mapping Generating a Differential Operator”. Malaya Journal of Matematik, vol. 9, no. 03, July 2021, pp. 91-98, doi:10.26637/mjm0903/004.