Monotone traveling waves in a general discrete model for populations with long term memory

Downloads

DOI:

https://doi.org/10.26637/mjm11S/008

Abstract

In this paper we consider the existence of monotone traveling waves for a class of general integral difference models for populations that are dependent on the previous state term and also on long term memory. This allows us to consider multiple past states. For this model we will have to deal with the non-compactness of the evolution operator when we prove the existence of a fixed point. This difficulty will be overcome by using the Monotone Iteration Method and Dini’s Theorem to show uniform convergence of an iterative evolution operator to a continuous wave function.

Keywords:

Traveling waves, spreading speed, delay effect, partially sedentary population

Mathematics Subject Classification:

92D25, 37N25, 39A22
  • Pages: 115-124
  • Date Published: 01-10-2023
  • Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday

D.G. A RONSON AND H. W EINBERGER , Nonlinear diffusion in population genetics, combustion, and nerve

propagation. Partial Differential Equations and Related Topics (J. Golstein ed.). pp. 5-49. Lecture Notes in

Mathematics, vol. 466. Springer. Berlin 1975.

D.G. A RONSON AND H.F. W EINBERGER , Multidimensional nonlinear diffusion arising in population genetics. Adv.in Math., 30(1)(1978), 33–76. DOI: https://doi.org/10.1016/0001-8708(78)90130-5

K. G OPALSAMY , Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic Publishers. Dordrecht, 1992. DOI: https://doi.org/10.1007/978-94-015-7920-9

S ZE -B I H SU AND X IAO -Q IANG Z HAO , Spreading speeds and traveling waves for nonmonotone integrodifference equations. SIAM J. Math. Anal., 40 (2008), 776-789. DOI: https://doi.org/10.1137/070703016

M. K OT , Discrete-time travelling waves: ecological examples. J. Math. Biol., 30(4)(1992), 413–436. DOI: https://doi.org/10.1007/BF00173295

M. K OT , M.A. L EWIS AND P. VAN DEN D RIESSCHE , Dispersal data and the spread of invading organisms. Ecology, 77 (1996), 2027–2042. DOI: https://doi.org/10.2307/2265698

L E M ANH T HUC AND N GUYEN V AN M INH , Monotone traveling waves in a general discrete model for populations. Discrete Contin. Dyn. Syst. Ser. B 22(8)(2017), 3221–3234. DOI: https://doi.org/10.3934/dcdsb.2017171

M. A. L EWIS , B. L I AND H.F. W EINBERGER , Spreading speed and linear determinacy for two-species competition models. J. Math. Biol., 45(3)(2002), 219–233. DOI: https://doi.org/10.1007/s002850200144

B. L I , Traveling wave solutions in a plant population model with a seed bank. J. Math. Biol. 65(2012), 855–873. DOI: https://doi.org/10.1007/s00285-011-0481-x

B. L I , M. A. L EWIS AND H. F. W EINBERGER , Existence of traveling waves for integral recursions with nonmonotone growth functions. J. Math. Bio., 58 (2009), 323-338. DOI: https://doi.org/10.1007/s00285-008-0175-1

B. L I , M. A. L EWIS , H. F. W EINBERGER , Spreading speeds as slowest wave speeds for cooperative systems. Math. Biosci., 196(1)(2005), 82–98. DOI: https://doi.org/10.1016/j.mbs.2005.03.008

X. L IANG AND X.-Q. Z HAO , Asymptotic speeds of spread and traveling waves for monotone semifows with applications. Communications on Pure and Applied Mathematics, 60(2007), 1–40. DOI: https://doi.org/10.1002/cpa.20154

X. L IANG AND X.-Q. Z HAO , Spreading speeds and traveling waves for abstract monostable evolution systems. Journal of Functional Analysis, 259 (2010), 857–903. DOI: https://doi.org/10.1016/j.jfa.2010.04.018

F. L UTSCHER , Density-dependent dispersal in integrodifference equations. J. Math. Biol., 56 (4)(2008), 499–524. DOI: https://doi.org/10.1007/s00285-007-0127-1

F. L UTSCHER AND N GUYEN V AN M INH , Spreading Speeds and Traveling Waves in Discrete Models of Biological Populations with Sessile Stages, Nonlinear Analysis: Real World Applications 14 (2013), 495–506. DOI: https://doi.org/10.1016/j.nonrwa.2012.07.011

R. L UI , Existence and stability of traveling wave solutions of a nonlinear integral operator. J. Math.Biol. 16 (1983), 199–220. DOI: https://doi.org/10.1007/BF00276502

R. L UI , Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math.Biosci. 93 (1989), 269–295. DOI: https://doi.org/10.1016/0025-5564(89)90026-6

R. L UI , Biological growth and spread modeled by systems of recursions. II Biological theory. Math. Biosci., 93 (1989), 297–312. DOI: https://doi.org/10.1016/0025-5564(89)90027-8

N. M AC D ONALD AND A.R. W ATKINSON , Models of an annual plant population with a seed bank. J Theor Biol. 93 (1981), 643-653. DOI: https://doi.org/10.1016/0022-5193(81)90226-5

M.G. N EUBERT , M. K OT , AND M.A. L EWIS , Dispersal and pattern formation in a discrete-time predator-prey model. Theor. Pop. Biol. 48 (1995), 7–43. DOI: https://doi.org/10.1006/tpbi.1995.1020

M. N EUBERT AND H. C ASWELL , Demography and Dispersal: Calculation and sensitivity analysis of invasion speeds for structured populations. Ecology, 81 (6)(2000), 1613–1628. DOI: https://doi.org/10.1890/0012-9658(2000)081[1613:DADCAS]2.0.CO;2

J.A. P OWELL , I. S LAPNI ˇ CAR AND W. VAN DER W ERF , Epidemic Spread of a Lesion-Forming Plant Pathogen Analysis of a Mechanistic Model with Infinite Age Structure, J. Lin. Alg. Appl., 398 (2005), 117–140. DOI: https://doi.org/10.1016/j.laa.2004.10.020

M. R EES AND M.J. L ONG , The Analysis and Interpretation of Seedling Recruitment Curves. Am. Nat. 141 (1993), 233–262. DOI: https://doi.org/10.1086/285471

H. L. R OYDEN AND P.M. F ITZPATRICK , Real Analysis, Pearson, New York 4th Edition, (2010).

https://doi.org/10.1137/1007096 DOI: https://doi.org/10.1137/1007096

A.R. T EMPLETON AND D.A. L EVIN , Evolutionary consequences of seed pools. Am. Nat. 114 (1979), 232–249. DOI: https://doi.org/10.1086/283471

H. T HIEME , Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread. J. Math. Biol., 8 (2)(1979), 173–187. DOI: https://doi.org/10.1007/BF00279720

H. T HIEME , Asymptotic estimates of the solutions of nonlinear integral equations and asymptotic speeds for the spread of populations. J. Reine Angew. Math., 306 (1979), 94–121. DOI: https://doi.org/10.1515/crll.1979.306.94

L E M ANH T HUC , F. L UTSCHER AND N GUYEN V AN M INH , Traveling wave dispersal in

partially sedentary age-structured populations, Acta Mathematica Vietnamica, 36 (2011), 319-330.

https://doi.org/10.1017/cbo9780511525711.003 DOI: https://doi.org/10.1017/CBO9780511525711.003

A. V ALLERIANI AND K. T IELB ¨ ORGER , Effect of age on germination of dormant seeds. Theor. Pop. Biol. 70 (2006), 1–9. DOI: https://doi.org/10.1016/j.tpb.2006.02.003

R.R. V EIT , M.A. L EWIS , Dispersal, population growth, and the Allee effect: dynamics of the House Finch invasion of eastern North America, Am. Nat., 148 (1996), 255–274. DOI: https://doi.org/10.1086/285924

D.V OLKOV AND R. L UI , Spreading speed and travelling wave solutions of a partially sedentary population. IMA Journal of Applied Mathematics, 72 (2007), 801–816. DOI: https://doi.org/10.1093/imamat/hxm025

H. W EINBERGER , Long-time behavior of a class of biological models. SIAM J. Math. Anal., 13 (1982), 353–396. DOI: https://doi.org/10.1137/0513028

H. W EINBERGER , Asymptotic behavior of a model in population genetics. Partial Differential Equations and Applications (J. Chadam ed.). Lecture Notes in Mathematics, vol. 648, pp. 47–98. Springer, New York 1978. DOI: https://doi.org/10.1007/BFb0066406

H.F. W EINBERGER M. A. L EWIS AND B. L I , Anomalous spreading speeds of cooperative recursion systems. J. Math. Biol., 55(2)(2007), 207–222. DOI: https://doi.org/10.1007/s00285-007-0078-6

X.-Q. Z HAO , Spatial Dynamics of Some Evolution Systems in Biology. In: Y. Du, H. Ishii, and W.-Y. Lin (Eds.) Recent Progress on Reaction-Diffusion Systems and Viscosity Solutions. World Scientific, 2009. DOI: https://doi.org/10.1142/9789812834744_0015

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Barker, W., and A. Alzahrani. “Monotone Traveling Waves in a General Discrete Model for Populations With Long Term Memory”. Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 115-24, doi:10.26637/mjm11S/008.