The spectrum theory of the discrete Schrödinger operator and its application
Downloads
DOI:
https://doi.org/10.26637/mjm11S/009Abstract
This paper introduces the spectrum theory of discrete Schrödinger operators with different kinds of potentials, including bounded, unbounded, periodic, or complex potentials. The paper also provides exponential estimates of the Green's function and eigenfunctions of the discrete Schrödinger operators. As an application, I review some of our results on standing wave solutions of discrete Schrödinger equations.
Keywords:
spectrum, bounded/unbounded potential, complex potential, periodic potential, Green's function, standing waves, discrete Schrödinger operatorMathematics Subject Classification:
35Q55, 35Q51, 37L60, 39A12, 39A70, 47J30, 78A40- Pages: 125-148
- Date Published: 01-10-2023
- Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday
A. A MBROSETTI AND P.H. R ABINOWITZ , Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381, 1973. DOI: https://doi.org/10.1016/0022-1236(73)90051-7
W. K IRSCH AND B. S IMON , ComparisontheoremsforthegapofSchrödingeroperators, JournalofFunctional
Analysis, 75(2), 396-410, 1987. DOI: https://doi.org/10.1016/0022-1236(87)90103-0
C. R EMLING , Schrödinger operators in the twenty-first century, Journal of Mathematical Physics, 38(3),
-1234, 1997.
G. T ESCHL , Mathematical methods in quantum mechanics: With applications to Schrödinger operators,
American Mathematical Society, 2009.
B. S IMON , Spectral analysis of rank one perturbations and applications, In Operator algebras, mathematical physics, and low-dimensional topology (pp. 109-149), American Mathematical Society, 2015.
Y. M. B EREZANSKY , Z. G. S HEFTEL AND G. F. U S , Functional Analysis, I, Birkhäuser, Basel, 1996.
Y. M. B EREZANSKY , Z. G. S HEFTEL AND G. F. U S , Functional Analysis, II, Birkhäuser, Basel, 1996.
H. B REZIS , Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer, New York,
M. M. B ROWN , M. S. P. E ASTHAM AND K. M. S CHMIDT , Periodic Differential Operators, Birkhäuser, Basel, 2013. DOI: https://doi.org/10.1007/978-3-0348-0528-5
G. B ERKOLAIKO AND P. K UCHMENT , Introduction to Quantum Graphs, Amer. Math.Soc., Providence, R.I., 2013.
N. D UNFORD AND J. T. S CHWARTZ , Linear Operators. Part I:General Theory, Wiley, New York, 1988.
M. S. P. E ASTHAM , The Spectral Theory of Periodic Differential Equations, Scottish Acad. Press, Edinburgh, 1973.
L. V. K ANTOROVICH AND G. P. A KILOV , Functional Analysis, Pergamon, Oxford, 1982.
E. K OROTYAEV AND N. S ABUROVA , hSchrödinger operators on periodic discrete graphs, J. Math. Anal. Appl., 420 (2014), 576–611. DOI: https://doi.org/10.1016/j.jmaa.2014.05.088
P. K UCHMENT , Floquet Theory for Partial Differential Equations, Birkhäuser, Basel, 1993. DOI: https://doi.org/10.1007/978-3-0348-8573-7
I. E. L EONARD , Banach sequence spaces, J. Math. Anal. Appl., 54(1976), 245–265. DOI: https://doi.org/10.1016/0022-247X(76)90248-1
L. A. L USTERNIK AND V. J. S OBOLEV , Elements of Functional Analysis, Hindustan Publ., Delhi, 1974.
P. VAN M OERBEKE , The spectrum of Jacobi matrices, Invent. Math., 37(1976), 45–81. DOI: https://doi.org/10.1007/BF01418827
A. P ANKOV , Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19(2006), 27-40. DOI: https://doi.org/10.1088/0951-7715/19/1/002
A. P AZY , Semigroups of Linear Operators and Applications, Springer, New York, 1983. DOI: https://doi.org/10.1007/978-1-4612-5561-1
P.H. R ABINOWITZ , Minimax methods in critical point theory with applications to differential equations,
AMS Providence RI: The CBMS Regional Conference Series in Mathematics Number 65 (1984).
M. R EED AND B. S IMON , Methods of Modern Mathematical Physics, IV: Analysis of Operators, Academic
Press, San Diego, 1978.
K. S CHM ¨ UDGEN , Unbounded Self-Adjoint Operators on Hilbert Space, Springer, Dordrecht, 2012.
G. T ESCHL , Jacobi Operators and Completely Integrable Systems, Amer. Math. Soc., Providence, R.I., 2008.
M. W ILLEM , Minimax Methods, Boston, MA: Birkhäuser, 1996.
G. Z HANG , Breather solutions of the discrete nonlinear Schrödinger equation with unbounded potential, J. Math. Phys., 50 (2009), 013505. DOI: https://doi.org/10.1063/1.3036182
G. Z HANG , Breather solutions of the discrete nonlinear Schrödinger equation with sign changing
nonlinearity, J. Math. Phys., 52 (2011), 043516.
G. Z HANG AND F. L IU , Existence of breather solutions of the DNLS equation with unbounded potential,
Nonlin. Anal., 71 (2009), e786–e792. DOI: https://doi.org/10.1016/j.na.2008.11.071
G. Z HANG AND A. P ANKOV , Standing waves of the discrete nonlinear Schrödinger equations withgrowing potentials, Commun. Math. Analysis, 5(2)(2008), 38–49.
G. Z HANG AND A. P ANKOV , Standing wave solutions for the discrete nonlinear Schrödinger equations with unbounded potentials, II, Applicable Anal., 89 (2011), 1541–1557. DOI: https://doi.org/10.1080/00036810902942234
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Guoping Zhang
This work is licensed under a Creative Commons Attribution 4.0 International License.