Generalized almost periodic solutions of Volterra difference equations

Downloads

DOI:

https://doi.org/10.26637/mjm11S/010

Abstract

In this paper, we investigate several new classes of generalized \(\rho\)-almost periodic sequences in the multi-dimensional setting. We specifically analyze the class of Levitan \(\rho\)-almost periodic sequences and the class of remotely \(\rho\)-almost periodic sequences. We provide many important applications of the established theoretical results to the abstract Volterra difference equations.

Keywords:

abstract Volterra difference equations, Levitan \(\rho\)-almost periodic sequences , remotely \(\rho\)-almost periodic sequences

Mathematics Subject Classification:

39A24, 43A60, 34C27
  • Pages: 149-165
  • Date Published: 01-10-2023
  • Vol. 11 No. S (2023): Malaya Journal of Matematik (MJM): Special Issue Dedicated to Professor Gaston M. N'Guérékata’s 70th Birthday

E. ALVAREZ, S. DIAZ AND C. LIZAMA, On the existence and uniqueness of (N, λ)-periodic solutions to a class of Volterra difference equations, Advances Diff. Equ., 2019:105(2019), doi: 10.1186/s13662-019-2053-0. DOI: https://doi.org/10.1186/s13662-019-2053-0

E. ALVAREZ, S. DIAZ AND C. LIZAMA, Existence of (N, λ)-periodic solutions for abstract fractional difference equations, Mediterr. J. Math., 19(47)(2022), doi: 10.1007/s00009-021-01964-6. DOI: https://doi.org/10.1007/s00009-021-01964-6

D. ARAYA, R. CASTRO AND C. LIZAMA, Almost automorphic solutions of difference equations, Advances Diff. Equ., 2009(591380) (2009), 15 pages, doi:10.1155/2009/591380. DOI: https://doi.org/10.1155/2009/591380

B. CHAOUCHI, M. KOSTIC AND D. VELINOV, Metrical almost periodicity, metrical approximations of ´ functions and applications, submitted. https://arxiv.org/abs/2209.13576.

L. DIAZ AND R. NAULIN, A set of almost periodic discontinuous functions, Pro. Mathematica 20(39-40)(2006), 107–118.

S. ELAYDI, Stability and asymptoticity of Volterra difference equations: a progress report, J. Comput. Appl. Math., 228(2)(2009), 504–513, doi: 10.1016/j.cam.2008.03.023. DOI: https://doi.org/10.1016/j.cam.2008.03.023

A. M. FINK, Extensions of almost automorphic sequences, J. Math. Anal. Appl., 27(3)(1969), 519–523, doi: 10.1016/0022-247X(69)90132-2. DOI: https://doi.org/10.1016/0022-247X(69)90132-2

M. KOSTIC, Almost Periodic and Almost Automorphic Type Solutions to Integro-Differential Equations, ´W. De Gruyter, Berlin, 2019. DOI: https://doi.org/10.1515/9783110641851

M. KOSTIC, Asymptotically ´ ρ-almost periodic type functions in general metric, Ann. Univ. Craiova Math. Comput., 49(2) (2022), 358–370, doi: 10.52846/ami.v49i2.1595. DOI: https://doi.org/10.52846/ami.v49i2.1595

M. KOSTIC, B. CHAOUCHI, W.-S. DU AND D. VELINOV, Generalized ´ ρ-almost periodic sequences and applications, https://www.researchgate.net/publication/368472224.

M. KOSTIC AND V. KUMAR, Remotely ´ c-almost periodic type functions in R^n, Arch. Math. (Brno), 58(2)(2022), 85–104, doi: 10.5817/AM2022-2-85. DOI: https://doi.org/10.5817/AM2022-2-85

H.C. KOYUNCUOGLU AND M. ADIVAR, Almost periodic solutions of Volterra difference systems, ˘ Dem. Math., 50(2017), 320-329, doi: 10.1515/dema-2017-0030. DOI: https://doi.org/10.1515/dema-2017-0030

M. LEVITAN, Almost Periodic Functions, G.I.T.T.L., Moscow, 1953 (in Russian).

B. M. LEVITAN AND V. V. ZHIKOV, Almost Periodic Functions and Differential Equations, Univ. Publ. House, Moscow, 1978, English translation by Cambridge University Press, 1982.

C. MAULEN, S. CASTILLO, M. KOSTI ´ C AND M. PINTO, Remotely almost periodic solutions of ´ordinary differential equations, J. Math., 2021(2021), doi: 10.1155/2021/9985454. DOI: https://doi.org/10.1155/2021/9985454

A. NAWROCKI, On some applications of convolution to linear differential with Levitan almost periodic coefficients, Topol. Meth. Nonl. Anal., 50(2)(2017), 489–512 doi: 10.12775/TMNA.2017.015 DOI: https://doi.org/10.12775/TMNA.2017.015

A. NAWROCKI, Diophantine approximations and almost periodic functions, Demonstr. Math., 50(2017), 100–104, doi: 10.1515/dema-2017-0011. DOI: https://doi.org/10.1515/dema-2017-0011

R. YUAN, On Favard’s theorems, J. Differ. Equ., 249(8)(2010), 1884–1916 doi: 10.1016/j.jde.2010.07.014. DOI: https://doi.org/10.1016/j.jde.2010.07.014

C. ZHANG AND L. JIANG, Remotely almost periodic solutions to systems of differential equations with piecewise constant argument, Appl. Math. Lett., 21(8)(2008), 761–768, doi: 10.1016/j.aml.2007.08.007. DOI: https://doi.org/10.1016/j.aml.2007.08.007

  • NA

Metrics

Metrics Loading ...

Published

01-10-2023

How to Cite

Kostic, M., and H. C. Koyuncuoğlu. “Generalized Almost Periodic Solutions of Volterra Difference Equations”. Malaya Journal of Matematik, vol. 11, no. S, Oct. 2023, pp. 149-65, doi:10.26637/mjm11S/010.