Detour domination number of some path and cycle related graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0701/0004

Abstract

The detour distance $D(u, v)$ between two vertices of a connected graph $G$ is the length of a longest path between them. A set $S$ of vertices of $G$ is called a detour dominating set if every vertex of $G$ is detour dominated by some vertex in $S$. A detour dominating set of minimum cardinality is a minimum detour dominating set and its cardinality is the detour domination number $\gamma_D(G)$. We have investigated detour domination number of larger graphs obtained from path and cycles by means of various graph operations.

Keywords:

Domination number, Detour distance, Detour domination number

Mathematics Subject Classification:

Mathematics
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot-360005, Gujarat, India.
  • S. H. Karkar Department of Mathematics, Government Engineering College, Rajkot-360005, Gujarat, India.
  • Pages: 15-19
  • Date Published: 01-01-2019
  • Vol. 7 No. 01 (2019): Malaya Journal of Matematik (MJM)

F. Buckley and F. Harary, Distance in Graphs, AddisonWesley, Redwood City, 1990.

G. Chartrand, T. W. Haynes, M. A. Henning and P. Zhang, Detour domination in graphs, Ars Combinatoria, 71(2004), 149-160.

G. Chartrand, G. L. Johns and S. Tian, Detour distance in graph, Annals of Discrete Mathematics, 55(1993), 127136.

G. Chartrand, G. L. Johns and P. Zhang, The detour number of a graph, Util. Math., 64(2003), 97-113.

G. Chartrand, G. L. Johns and P. Zhang, On the detour number and geodetic number of a graph, Ars combinatoria, 72(2004), 3-15.

G. Chartrand and P. Zhang, Distance in graphs - Taking the long view, AKCE J. Graphs. Combin., 1(1)(2004), $1-13$.

F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1969.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

J. John and N. Arianayagam, The detour domination number of a graph, Discrete Mathematics, Algorithms and Applications, 9(1)(2017), 1750006 (7 pages).

S. K. Vaidya and S. H. Karkar, Detour domination number of some cycle related graphs, (communicated).

S. K. Vaidya and R. N. Mehta, On detour domination in graphs, International Journal of Mathematics and Scientific Computing, 11(2016), 397-407.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2019

How to Cite

S. K. Vaidya, and S. H. Karkar. “Detour Domination Number of Some Path and Cycle Related Graphs”. Malaya Journal of Matematik, vol. 7, no. 01, Jan. 2019, pp. 15-19, doi:10.26637/MJM0701/0004.