On viscosity solution of Hamilton-Jacobi-Belman equations
Downloads
DOI:
https://doi.org/10.26637/MJM0701/0009Abstract
The paper deals with an optimal control problem governed by a state equation which involves evolution inclusions. These inclusions are formulated through time-dependent maximal monotone operators and the control variable runs in a suitable class of Young measures. We show, in the finite dimensional setting, that the value function of the problem is a viscosity solution of the Hamilton-Jacobi-Bellman problem.
Keywords:
Maximal monotone operator, evolution inclusion, Young measure, control, value function, viscosity solutionMathematics Subject Classification:
Mathematics- Pages: 42-49
- Date Published: 01-01-2019
- Vol. 7 No. 01 (2019): Malaya Journal of Matematik (MJM)
J. P. Aubin and A. Celina, Differential inclusions, setvalued maps and viability theory, Springer, Berlin Heidelberg, 1984.
E. J. Balder, New fundamentals of Young measure convergence, in Calc. Var. Partial Differential Equations. Chapman Hall-CRC Res. Notes Math., vol. 411, 2000.
E. N. Barron and R. Jensen, Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonian, Comm. Partial Diff.Equ. 15 (1990), 1713-1742.
E. N. Barron and R. Jensen, Optimal control and semicontinuous viscosity solutions, Proc. A. M. S. 113:2 (1991), $397-402$.
H. Brézis, Opérateurs maximaux monotones et semigroupes de contractions dans les espaces de Hilbert, Lecture Notes in Math, North-Holland, 1973.
C. Castaing, A. Jofre and A. Salvadori, Control problems governed by functional evolution inclusions with Young measures, J. Nonlin.Convex Anal 5:1 (2004), 131-152.
C. Castaing, A. Jofre and A. Syam, Some limit results for integrands and Hamiltonians with applications to viscosity, J. Nonlin. Convex Anal. 6 (2005), 465-485.
C. Castaing and S. Marcellin, Evolution inclusions with pln functions and application to viscosity and control, $J$. Nonlin. Convex Anal. 8:2 (2007), 227-255.
C. Castaing and P. Raynaud de Fitte, On the fiber product of Young measures with applications to a control problem with measures, Adv. Math. Econ. 6 (2004), 1-38.
C. Castaing, P. Raynaud de Fitte and A. Salvadori, Some variational convergence results for a class of evolution inclusions of second order using Young measures, $A d v$. Math. Econ. 7 (2005), 1-32.
C. Castaing, P. Raynaud de Fitte and A. Salvadori, Some variational convergence results with applications to evolution inclusions, Adv. Math. Econ. 8 (2006), 33-73.
C. Castaing, C., P. Raynaud de Fitte and M. Valadier, Young measures on topological spaces with applications in control theory and probability theory, Kluwer Academic Publishers, Dordrecht, 2004.
C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math., 580, Springer, Berlin-New York, 1977.
M. G. Crandall, L. C. Evans and P. L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282:2 (1984), 487-502.
M. G. Crandall and P. L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42.
R. J. Elliot, Viscosity solutions and optimal control, Pitman, London, 1977.
R. J. Elliot and N.J. Kalton, Extended Isaacs equations for games of survival, Differential games and control theory. Proc. NSF-CBMS Regional Res. Conf., Univ. Rhode Island, Kingston, R.I., Lecture Notes in Pure Appl. Math. 10, Dekker, New York, (1974), 321-336.
R. J. Elliot and N.J. Kalton, Cauchy problems for certain Isaacs-Bellman equations and games of survival, Trans. Amer. Math. Soc. 198 (1974), 45-72.
R. J. Elliot and N. J. Kalton, Boundary value problems for nonlinear partial differential operators, J. Math. Anal. Appl. 46 (1974), 228-241.
L. C. Evans and P. E. Souganidis, Differential games and representation formulas for solutions of Hamilton-JacobiIsaacs equations, Indiana Univ. Math. J. 33:5 (1984), 773-797.
H. Frankowska, Lower semicontinuous solutions of HamiltonJacobi-Bellman equations, SIAM J. Control Optim. 31 (1993), 257-272.
H. Frankowska, S. Plaskacz and T. Rzezuchowski, Measurable viability theorems and Hamilton-Jacobi-Bellman equation. J Diff. Equ. 116 (1995), 265-305.
S. Saïdi and M. F. Yarou, Control problems governed by time-dependent maximal-monotone operators, ESAIM Control Optim. Calc. Var. 23:2 (2017), 455-473.
A. A. Vladimirov, Nonstationary dissipative evolution equations in a Hilbert space, Nonlinear Anal., Theory Methods Appl. 17:6 (1991), 499-518.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.