Rough $I$-statistical convergence of double sequences in normed linear spaces

Downloads

DOI:

https://doi.org/10.26637/MJM0701/0011

Abstract

The notion of I -statistical convergence of a double sequence was first introduced by Belen et. al.[ 2 ] and the notion of rough convergence of a sequence was first introduced by Phu [ 19 ]. In this paper we introduce and study the notion of rough I -statistical convergence of double sequences in normed linear spaces. We also introduce the notion of rough I -statistical limit set of a double sequence and discuss about some topological properties of this set.

Keywords:

Double sequence, I -statistical convergence, rough I -statistical convergence, I - statistical boundedness, rough I -statistical limit set

Mathematics Subject Classification:

Mathematics
  • Pages: 55-61
  • Date Published: 01-01-2019
  • Vol. 7 No. 01 (2019): Malaya Journal of Matematik (MJM)

S. Aytar, Rough statistical covergence, Numer. Funct. Anal. And Optimiz., 29(3)(2008), 291-303.

C. Belen and M. Yildirim, On generalized statistical convergence of double sequences via ideals, Ann. Univ. Ferrara 58(1) (2012), 11-20.

P. Das and P. Malik., On the statistical and I-variation of double sequences, Real Anal. Exchange, 33(2007), 351-364.

P. Das, P. Kostyrko, W. Wilczyński and P. Malik., I and $I^*$-convergence of double sequences, Math. Slovaca, $58(2008), 605-620$.

P. Das and P. Malik., On extremal I-limit points of double sequences, Tatra Mt. Math. Publ, 40 (2008), 91-102.

K. Demirci., I-limit superior and limit inferior, Math. Commun., 6(2)(2001), 165-172.

K. Dems., On I-Cauchy sequences, Real Anal. Exchange, 30(1)(2004/2005), 123-128.

E. Dündar., On rough $I_2$-convergence of double sequences, Numer. Funct. Anal.And Optimiz., DOI:10.1080/01630563.2015.1136326.

P. Kostyrko, T. Šalát and W. Wilczyński., I-convergence, Real Anal. Exchange, 26(2)(2000/2001), 669-685.

P. Kostyrko, M. Macaz, T. Šalát and M. Sleziak., Iconvergence and external I-limit points, Math. Slovaca, 55(4)(2005), 443-454.

B.K. Lahiri and P. Das., I and $I^*$ convergence in topological spaces, Math. Bohemica, 130(2)(2005), 153-160.

P. Malik and M. Maity., On rough convergence of double sequence in normed linear spaces, Bull. Allah. Math. Soc., 28(1)(2013), 89-99.

P. Malik and M. Maity., On rough statistical convergence of double sequences in normed linear spaces, Afr. Mat., (2016) 27: 141-148.

P. Malik, M. Maity and A. Ghosh, A note on rough I-convergence of double sequences. arxiV preprint arXiv.,(2016) 1603.01363.

P. Malik and A. Ghosh.,On I-statistical Cluster point of double sequences. arxiv preprint arxiV.,(2017) 1703.07177.

Moricz, F., Statistical convergence of multiple sequences, Arch. Math. 81, 82-89, 2003.

M. Mursaleen and O.H.H. Edely., Statistical Convergence of double sequences, J. Math. Anal. Appl, 288 (2003), 223-231.

S.K. Pal, D. Chandra and S. Dutta., Rough ideal convergence, Hacettepe J. of Math. and Stat., 42(6)(2013),

H.X. Phu., Rough convergence in normed linear spaces, Numer. Funct. Anal. And Optimiz., 22(2001), 201-224.

H.X. Phu., Rough convergence in infinite dimensional normed spaces, Numer. Funct. Anal. And Optimiz., 24(2003), 285-301.

A. Pringsheim., Zur theortie der Gamma-Functionen, Math. Annalen., 31 (1888), 455-481.

B. Tripathy and B. C. Tripathy., On I-convergent double sequences, Soochow Journal of Mathematics., 31(4)(2005), 549-460.

B. C. Tripathy., Statistically convergent double sequences, Tamkang journal of mathematics., 34(3)(2003), 231-237.

U. Yamanci, and M. Gürdal., $mathscr{I}$-statistically pre-Cauchy double sequences, Global Journal of Mathematical Analysis, 2 (4) (2014), 297-303.

A. Zygmund., Trigonometric Series, Cambridge University Press, Cambridge, UK, 1979.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2019

How to Cite

Prasanta Malik, and Argha Ghosh. “Rough $I$-Statistical Convergence of Double Sequences in Normed Linear Spaces”. Malaya Journal of Matematik, vol. 7, no. 01, Jan. 2019, pp. 55-61, doi:10.26637/MJM0701/0011.