An existence result of \(\mu\)-pseudo almost automorphic solutions of Clifford-valued semi-linear delay differential equations

Downloads

DOI:

https://doi.org/10.26637/mjm0903/007

Abstract

In this work we are concern with Clifford-valued semi-linear delay differential equations in a Banach space. By using the Banach fixed point theorem, we prove the existence and uniqueness of \(\mu\) -pseudo almost automorphic solution for Clifford-valued semi-linear delay differential equations.

Keywords:

\(\mu\)-pseudo almost automorphic functions, Clifford algebra, Semi-linear delay differential equations

Mathematics Subject Classification:

15A66, 43A60
  • Moumini Kere Département de Mathématiques, Institut Des Sciences, 01 BP 1757 Ouagadougou 01, Burkina Faso.Laboratoire d’Analyse Numérique, d’Informatique et de BIomathématiques, UFR/SEA, Université Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso.
  • Gaston Mandata Guerekata University Distinguished Professor, NEERLab, Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA
  • Enock R. Oueama Département de Mathématiques et Informatique, Facultédes Sciences, NEERLab, Universitéde Bangui. BP 908, Bangui, Central African Republic.
  • Pages: 129-140
  • Date Published: 01-07-2021
  • Vol. 9 No. 03 (2021): Malaya Journal of Matematik (MJM)

A-N. Akdad, B. Es-Sebar And K. Ezzinbi, Composition theorems of Stepanov $mu$-pseudo almost automorphic functions and applications to nonautonomous neutral evolution equations, Differ. Equ. Dyn. Syst. 25(2017), 397-416.

E. Alvarez-Pardo and C. Lizama, Weighted pseudo almost automorphic mild solutions for two term fractional order differential equations, Appl. Math. Comput. 271(2015), 154-167.

W. Arendt, C. Batty, M. Hieber And F. Neubrander, Vector-valued Laplace transforms and Cauchy problems, Monogr. Math. 96(2001).

J. Blot, P. CieUtat And K. EzZinBi, Measure theory and pseudo almost automorphic functions: New developements and applications, Nonlinear Anal. 75(2012), 2426-2447.

J. Blot, P. Cieutat, G. M. N'GuéréKATA And D. Pennequin, Superposition operators beetwen various almost periodic function spaces and applications, Commun. Math. Anal. 5(2009), 42-70.

J. Blot, G. M. Mophou, G. M. N'Guérékata and D. Pennequin, Weighted pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal. 71(2009), 903-909.

S. BocHNER, Uniform convergence of monotone sequence of functions, Proc. Natl. Acad. Sci. U.S.A, 47(1961), 582585.

S. BochnER, A new approach to almost periodicity, Proc. Natl. Acad. Sci. U.S.A, 48(1962), 2039-2045.

S. BOCHNER, Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. U.S.A, 52(1964), 907-910.

F. Brackx, R. Delange and F. Sommen, Clifford analysis. Pitman Advanced Publishing Program, London (1982).

S. BuCHHOLZ, A theory of neural computation with Clifford algebras. Ph.D. thesis, University of Kiel (2005).

Y.K. Chang, R. Zhang And G. M. N'GuÉrékAta, Weighted pseudo almost automorphic mild solutions to semilinear fractional differential equations, Comput. Math. Appl., 64(2012), 3160-3170.

C. Chevalley, The Algebraic Theory of Spinors, Columbia University Press, New York (1954).

P. Cieutat, S. Fatajou and G. M. N'Guérékata, Composition of pseudo-almost periodic and pseudo-almost automorphic functions and applications to evolution equations, Appl. Anal., 89(2010), 11-27.

W. K. Clifford, Applications of Grassmann's extensive algebra, Amer. J. Math., 1(1878), 350-358.

El H. A. Dads, K. Ezzinbi and M. Miraoui, $(mu, nu)$-Pseudo almost automorphic solutions for some nonautonomous differential equations, Internat. J. Math., 26(2015), 1550090.

M.A. Diop, K. Ezzinbi And M.M. MBAYE, Existence and global attractiveness of a square-mean $mu$-pseudo almost automorphic solutions for some stochastic evolution equation driven by Lévy noise, Math. Nachr., 290(2017), 12601280 .

D. Hestenes, G. Sobczyk And J. S. Marsh, Clifford algebra to geometric calculus: a unified language for mathematics and physics. Am. J. Phys., 53(1984), 510-511.

E. Hitzer, T. Nitta And Y. Kuroe, Applications of Clifford's geometric algebra, Adv. Appl. Clifford Algebras, 23(2013), 377-404.

M. KÉRÉ AND G. M. N'GUÉRÉKATA, $mu$ - pseudo almost automorphic mild solutions for two terms order fractional differential equations, Frac. Diff. Calc., in press.

Y. Li, J. XIANG, Existence and global exponentiel stability of anti-periodic solution for Clifford-valued inertial CohenGrossberg neural networks with delays, Neurocomputing, 332(2019), 259-269.

Y. Li AND J. XIANG, Global asymptotic almost periodic synchronization of Clifford-valued CNNs with discrete delays, Complexity, 2019(2019), 1-13.

Y. LI, Y. WANG AND B. LI, The existence and global exponential stability of $mu$-pseudo almost periodic solutions of Clifford-valued semi-linear delay diffential equations and an aplication, Adv. Appl. Clifford Algebras, 29(2019), 1-10.

J. Liang, G. M. N'GuÉrÉKAtA, T-J. XiAO And J. Zhang, Some properties of pseudo almost automorphic functions and applications to abstract differential equations, Nonlinear Anal., 70(2009), 2731-2735.

J. Liang, J. Zhang And T-J. XiaO, Composition of pseudo almost automorphic and asymptotically almost automorphic functions, J. Math. Anal. Appl., 340(2008), 1493-1499.

G. M. N'GUÉRÉKATA, Spectral theory for bounded functions and applications to evolution equations, Math. Res. Dev. Ser., (2017).

G. M. N'GuÉréKAtA, Almost automorphy, almost periodicity and stability of motions in Banach spaces, Forum Math., 13(2000), 581-588.

G. M. N'GUÉRÉKATA, Quelques remarques sur les fonctions asymptotiquement presque automorphes, Ann. Sci. Math. Québec, 7(1983), 185-191.

G. M. N'GuÉrÉKATA, Topics in Almost Automorphy, Springer, New York, (2005).

G. M. N'GuÉrékAta And A. Milcé, J-C. Mado, Assymptotically almost automorphic functions of order $n$ and applications to dynamic equations on time scales, Nonlinear Stud., 23(2016), 305-322.

G. M. N'GuÉréKata, G. Mophou ANd A. Milcé, Almost automorphic mild solution for some semilinear abstract dynamic equation on time scales, Nonlinear Stud., 23(2015), 381-395.

J. PEARSON AND D. BisSET, Back propagation in a Clifford algebra. Artif. Neural Netw., 2(1992), 413-416.

M. RIESz, Clifford Numbers and Spinors, Lecture Series $mathrm{N}^{circ}$ 38. The Institute for Fluid Dynamics and Applied Mathematics. University of Maryland, Maryland, (1958).

W. A. VEECH, Almost automorphic functions on groups, Amer. J. Math. 87(1965), 719-751.

T.J. Xiao, J. Liang And J. Zhang, Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces, Semigroup Forum, 76(2008), 518-524.

M. ZAKI, Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl., (4)101(1974), $91-114$.

J. ZHU AND J. SUN, Global exponential stability of Clifford-valued reccurrent neural networks, Neurocomputing, 173(2016), 685-689.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2021

How to Cite

Kere, M. ., G. M. . Guerekata, and E. . R. Oueama. “An Existence Result of \(\mu\)-Pseudo Almost Automorphic Solutions of Clifford-Valued Semi-Linear Delay Differential Equations”. Malaya Journal of Matematik, vol. 9, no. 03, July 2021, pp. 129-40, doi:10.26637/mjm0903/007.