On restrained domination number of some wheel related graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0701/0020

Abstract

For a graph $G=(V, E)$, a set $S \subseteq V$ is a restrained dominating set if every vertex not in $S$ is adjacent to a vertex in $S$ and also to a vertex in $V-S$. The minimum cardinality of a restrained dominating set of $G$ is called restrained domination number of $G$, denoted by $\gamma_r(G)$. We investigate restrained domination number of some wheel related graphs.

Keywords:

Dominating set, restrained dominating set, restrained domination number

Mathematics Subject Classification:

Mathematics
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot - 360 005, Gujarat, India
  • P. D. Ajani Department of Mathematics, Atmiya University, Rajkot-360005, Gujarat, India.
  • Pages: 104-107
  • Date Published: 01-01-2019
  • Vol. 7 No. 01 (2019): Malaya Journal of Matematik (MJM)

C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.

E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total Domination in Graphs, Networks, 10(1980), 211-219.

P. Dankelmann, J. H. Hattingh, M. A. Henning and H. C. Swart, Trees with Equal Domination and Restrained Domination Numbers, J. Global Optim., 34(2006), 597607.

G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained Domination in Graphs, Discrete Mathematics, 203(1999), 61-69.

G. S. Domke, J. H. Hattingh, M. A. Henning and L. R. Markus, Restrained Domination in Graphs with Minimum Degree Two, J. Combin. Math. Combin. Comput., 35(2000), 239-254.

G. S. Domke, J. H. Hattingh, M. A. Henning and L. R. Markus, Restrained Domination in Trees, Discrete Math., 211(2000), 1-9.

T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38(Amer. Math. Soc., Providence, RI), 1662.

E. Sampathkumar, The Global Domination Number of a Graph, Journal of Mathematical and Physical Sciences, $23(5)(1989), 377-385$.

V. Swaminathan and K. M. Dharmalingam, Degree Equitable Domination on Graphs, Kragujevac Journal of Mathematics, 35(1)(2011), 191-197.

J. A. Telle and A. Proskurowski, Algorithms for Vertex Partitioning Problems on Partial k-trees, SIAM J. Discrete Mathematics, 10(1997), 529-550.

S. K. Vaidya and P. D. Ajani, Restrained Domination Number of Some Path Related Graphs, Journal of Computational Mathematica, 1(1)(2017), 114-121.

S. K. Vaidya and P. D. Ajani, On Restrained Domination Number of Graphs, International Journal of Mathematics and Soft Computing, 8(1)(2018), 17-23.

  • NA

Metrics

PDF views
57
Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202616
|
Crossref
1

Published

01-01-2019

How to Cite

S. K. Vaidya, and P. D. Ajani. “On Restrained Domination Number of Some Wheel Related Graphs”. Malaya Journal of Matematik, vol. 7, no. 01, Jan. 2019, pp. 104-7, doi:10.26637/MJM0701/0020.