On restrained domination number of some wheel related graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0701/0020Abstract
For a graph $G=(V, E)$, a set $S \subseteq V$ is a restrained dominating set if every vertex not in $S$ is adjacent to a vertex in $S$ and also to a vertex in $V-S$. The minimum cardinality of a restrained dominating set of $G$ is called restrained domination number of $G$, denoted by $\gamma_r(G)$. We investigate restrained domination number of some wheel related graphs.
Keywords:
Dominating set, restrained dominating set, restrained domination numberMathematics Subject Classification:
Mathematics- Pages: 104-107
- Date Published: 01-01-2019
- Vol. 7 No. 01 (2019): Malaya Journal of Matematik (MJM)
C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.
E. J. Cockayne, R. M. Dawes and S. T. Hedetniemi, Total Domination in Graphs, Networks, 10(1980), 211-219.
P. Dankelmann, J. H. Hattingh, M. A. Henning and H. C. Swart, Trees with Equal Domination and Restrained Domination Numbers, J. Global Optim., 34(2006), 597607.
G. S. Domke, J. H. Hattingh, S. T. Hedetniemi, R. C. Laskar and L. R. Markus, Restrained Domination in Graphs, Discrete Mathematics, 203(1999), 61-69.
G. S. Domke, J. H. Hattingh, M. A. Henning and L. R. Markus, Restrained Domination in Graphs with Minimum Degree Two, J. Combin. Math. Combin. Comput., 35(2000), 239-254.
G. S. Domke, J. H. Hattingh, M. A. Henning and L. R. Markus, Restrained Domination in Trees, Discrete Math., 211(2000), 1-9.
T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ., 38(Amer. Math. Soc., Providence, RI), 1662.
E. Sampathkumar, The Global Domination Number of a Graph, Journal of Mathematical and Physical Sciences, $23(5)(1989), 377-385$.
V. Swaminathan and K. M. Dharmalingam, Degree Equitable Domination on Graphs, Kragujevac Journal of Mathematics, 35(1)(2011), 191-197.
J. A. Telle and A. Proskurowski, Algorithms for Vertex Partitioning Problems on Partial k-trees, SIAM J. Discrete Mathematics, 10(1997), 529-550.
S. K. Vaidya and P. D. Ajani, Restrained Domination Number of Some Path Related Graphs, Journal of Computational Mathematica, 1(1)(2017), 114-121.
S. K. Vaidya and P. D. Ajani, On Restrained Domination Number of Graphs, International Journal of Mathematics and Soft Computing, 8(1)(2018), 17-23.
- NA
Similar Articles
- V. Vinoba, N. Selvamalar, Improved makespan of the branch and bound solution for a fuzzy flow-shop scheduling problem using the maximization operator , Malaya Journal of Matematik: Vol. 7 No. 01 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.