Generalized \(\delta-s\bigwedge _{ij}\)-sets in bitopological spaces
Downloads
DOI:
https://doi.org/10.26637/mjm0903/008Abstract
The concepts of \(ij-\delta\)-semi closed and \(ij-\delta\)-semi open sets in bitopological spaces are introduced and studied. Also, the notions of {\(\delta -s\bigwedge _{ij} -\)}sets and {\(g\delta -s\bigwedge _{ij} -\)}sets are investigated. Furthermore , a new closure operator called \(Cl_{\delta }^{s\bigwedge _{ij} } \) on the bitopological space \((X,\tau _{1},\tau _{2})\) is defined and associated topology \(\tau _{\delta }^{s\bigwedge _{ij} }\) is given.
Keywords:
Bitopological space, \({ij}-\delta\)-semi open set, \(\delta -s\bigwedge _{ij}\)-set, \(g\delta-s\bigwedge _{ij}\)-setMathematics Subject Classification:
54A10 , 54C05, 54E55- Pages: 141-147
- Date Published: 01-07-2021
- Vol. 9 No. 03 (2021): Malaya Journal of Matematik (MJM)
G. K., BANERJEE, On pairwise almost strongly $theta$ - continuous mappings, Bull. Cal. Math. Soc., 74(1987), 195-206.
S. Bose, Semi open sets, semi continuity and semiopen mappings in bitopological spaces, Bull. Cal. Math. Soc., 73(1981), 237-246.
M. Caldas, E. Hatir And S. JAfARI, On Generalized $lambda_delta^s-$ sets and related topics topology, J. Koream Math. Soc., 74(4)(2010), No. 4, 735-742.
J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 3(13)(1963), 71-89.
F. H. KHEDR, Properties of $i j-delta-$ open sets, Fasciculi Mathematici, 52(2014), 65-81.
F. H. Khedr, A. M. Alshibani And T. Noiri, On $delta$-continuity in bitopological spaces, J. Egypt. Math. Soc., 5( 1 )( 1 9 9 7 ), 5 7--6 2.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 F.H. Khedr, O.R. Sayed
This work is licensed under a Creative Commons Attribution 4.0 International License.