Generalized \(\delta-s\bigwedge _{ij}\)-sets in bitopological spaces

Downloads

DOI:

https://doi.org/10.26637/mjm0903/008

Abstract

The concepts of \(ij-\delta\)-semi closed and \(ij-\delta\)-semi open sets in bitopological spaces are introduced and studied. Also, the notions of {\(\delta -s\bigwedge _{ij} -\)}sets and {\(g\delta -s\bigwedge _{ij} -\)}sets are investigated. Furthermore , a new closure operator called \(Cl_{\delta }^{s\bigwedge _{ij} } \) on the bitopological space \((X,\tau _{1},\tau _{2})\) is defined and associated topology \(\tau _{\delta }^{s\bigwedge _{ij} }\) is given.

Keywords:

Bitopological space, \({ij}-\delta\)-semi open set, \(\delta -s\bigwedge _{ij}\)-set, \(g\delta-s\bigwedge _{ij}\)-set

Mathematics Subject Classification:

54A10 , 54C05, 54E55
  • Pages: 141-147
  • Date Published: 01-07-2021
  • Vol. 9 No. 03 (2021): Malaya Journal of Matematik (MJM)

G. K., BANERJEE, On pairwise almost strongly $theta$ - continuous mappings, Bull. Cal. Math. Soc., 74(1987), 195-206.

S. Bose, Semi open sets, semi continuity and semiopen mappings in bitopological spaces, Bull. Cal. Math. Soc., 73(1981), 237-246.

M. Caldas, E. Hatir And S. JAfARI, On Generalized $lambda_delta^s-$ sets and related topics topology, J. Koream Math. Soc., 74(4)(2010), No. 4, 735-742.

J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 3(13)(1963), 71-89.

F. H. KHEDR, Properties of $i j-delta-$ open sets, Fasciculi Mathematici, 52(2014), 65-81.

F. H. Khedr, A. M. Alshibani And T. Noiri, On $delta$-continuity in bitopological spaces, J. Egypt. Math. Soc., 5( 1 )( 1 9 9 7 ), 5 7--6 2.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2021

How to Cite

Khedr, F., and O. Sayed. “Generalized \(\delta-s\bigwedge _{ij}\)-Sets in Bitopological Spaces”. Malaya Journal of Matematik, vol. 9, no. 03, July 2021, pp. 141-7, doi:10.26637/mjm0903/008.