H-V- super magic labeling of H-factorable graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0702/0002

Abstract

An $H$-magic labeling in an $H$-decomposable graph $G$ is a bijection $f: V(G) \cup E(G) \rightarrow\{1,2, \ldots, p+q\}$ such that for every copy $H$ in the decomposition, $\sum_{v \in V(H)} f(v)+\sum_{e \in E(H)} f(e)$ is constant. The function $f$ is said to be $H$ - $V$-super magic labeling if $f(V(G))=\{1,2, \ldots, p\}$. In this article, we give a few fundamental properties of $H$ - $V$-super magic labeling. Obtained the magic constant for $H$-factorable graphs which are $H$-V-super magic. Further we gave a necessary and sufficient condition for an even regular graph to be 2 -factor- $V$-super magic.

Keywords:

H -decomposable graph, H -factorable graph, H -magic labeling, H - V -super magic labeling, 2-factor- V -super magic

Mathematics Subject Classification:

Mathematics
  • Sindhu Murugan Research Scholar, Reg No-18213162092011, Scott Christian College(Autonomous), Nagercoil-629003, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India..
  • S. Chandra Kumar Department of Mathematics, Scott Christian College(Autonomous), Nagercoil-629003, Tamil Nadu, India.
  • Pages: 138-141
  • Date Published: 01-04-2019
  • Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)

W. S. Andrews, Magic Squares and Cubes, Dover 1960.

S. S. Block, S. A. Tavares, Before Sudoku: The World of Magic Squares, Oxford University Press, 2009.

J.A. Gallian, A Dynamic Survey of Graph Labeling, Electron. J. Combin., (2017), #DS6.

J.A. MacDougall, M. Miller, Slamin, W.D.Wallis, Vertex magic total labelings of graphs, Util. Math., 61(2002), 3-21.

J.A. MacDougall, M. Miller, K.A. Sugeng, Super vertex magic total labelings of graphs, in: Proceedings of the 15th Australian Workshop on Combinatorial Algorithms, (2004), 222-229.

G. Marimuthu, M.Balakrishnan, E-super vertex magic labeling of graphs, Discrete Appl. Math., 160 (2012), $1766-1774$

J. Petersen, Die Theorie der regularen Graphen, Acta Math., 15(1891), 19-32.

Sedlàček, Problem 27, in Theory of Graphs and its Applications, Proc. Symposium Smolenice, (1963), 163-167.

S. P. Subbiah, J. Pandimadevi, H-E-Super magic decomposition of graphs, Electronic Journal of Graph Theory and Applications, 2(2)(2014), 115-128.

V. Swaminathan, P. Jeyanthi, Super vertex - Magic labeling, Indian J. Pure Appl. Math., 34(6)(2003), 935-939.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2019

How to Cite

Sindhu Murugan, and S. Chandra Kumar. “H-V- Super Magic Labeling of H-Factorable Graphs”. Malaya Journal of Matematik, vol. 7, no. 02, Apr. 2019, pp. 138-41, doi:10.26637/MJM0702/0002.