A strong convergence theorem for $H(\cdot, \cdot)-\phi-\eta$-accretive mapping using proximal point algorithms
Downloads
DOI:
https://doi.org/10.26637/MJM0702/0010Abstract
In this paper, we study an explicit iterative algorithm with resolvent technique using a more general $H(\cdot, \cdot)-\phi-\eta$-accretive operator in uniformly convex Banach space. Using suitable conditions, we show that the corresponding iterative sequence converges strongly to a common point of two sets.It also becomes solution to the related variational inequality. The main result generalizes many such results.
Keywords:
H(·,·)−φ −η− Accretive operator, variational inequality, fixed point, weakly continuous duality mapping, contractive mapping, uniformly convex, resolvent, nonexpansive mappingMathematics Subject Classification:
Mathematics- Pages: 192-205
- Date Published: 01-04-2019
- Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
T. D. Benavides, G. L. Acedo, H. K. Xu, Iterative solutions for zeros of accretive operators, Math. Nachr, 248-249 (2003), 62-71.
H. Bréziz, P. L. Lions, Products infinis de resolvents, Israel J. Math., 29(1978), 329-345.
R. E. Jr. Bruck, A strongly convergent iterative solution of $0 in U(x)$ for a maximal monotone operator $mathrm{U}$ in Hilbert space, J. Math. Anal. Appl., 48(1974), 114-126.
H. K. Xu, Inequalities in Banach spaces and applications, Nonlinear Analysis, Theory Methods and Applications, $16(12)(1991), 1127-1138$.
J. S. Jung, Some results on Rockafellar-type iterative algorithms for zeros of accretive operators, J. Inequal. Appl., 2013(2013), 19.
J. S. Jung, Convergence of composite iterative methods for finding zeros of accretive operators, Nonlinear Anal., $71(2009), 1736-1746$.
J. S. Jung, Iterative algorithms for zeros of accretive operators and fixed points of nonexpansive mappings in Banach spaces, J. Comput. Anal. Appl., 20(2016), 688706.
J. S. Jung, W. Takahashi, Dual convergence theorems for the infinite products of resolvents in Banach spaces, Kodai Math. J., 14(1991), 358-365.
J. S. Jung, W. Takahashi, On the asymptotic behavior of infinite products of resolvents in Banach spaces, Nonlinear Anal., 20 (1993), 469-479.
S. Reich, On infinite products of resolvents, Atti. Accad. naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 63 (1997), $338-340$.
R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim., 14(1976), 877898.
Y. Song, New iterative algorithms for zeros of accretive operators, J. Korean Math. Soc., 46 (2009), 83-97.
Y. Song, J. I. Kang, Y. J. Cho, On iterations methods for zeros of accretive operators in Banach spaces, Appl. Math. Comput., 216 (2010), 1007-1017.
Y. Song, C. Yang, A note on a paper "A regularization method for the proximal point algorithm", J. Global Optim., 43 (2009), 115-125.
$mathrm{H} . mathrm{K} . mathrm{Xu}$, Inequality in Banach spaces with applications, Nonlinear Anal., 16 (1991), 1127-1138.
$mathrm{H}$. $mathrm{K} mathrm{Xu}, mathrm{A}$ regularization method for the proximal point algorithm, J. Global Optim., 36 (2006), 115-125.
Q. Zhang, Y. Song, Halpern type proximal point algorithm of accretive operators, Nonlinear Anal., 75 (2012), 1859-1868.
R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed Point Theory for Lipschitzian-type Mappings with Applications, Springer, New York, 2009.
I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
Jong Soo Jung, Strong convergence of an iterative algorithm for accretive operators and nonexpansive mappings, J. Nonlinear Sci. Appl., 9 (2016), 2394-2409.
L. S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl., 194 (1995), 114-125.
H. K. Xu, Iterative algorithms for nonlinear operators, $J$. London Math. Soc., 66 (2002), 240-256.
B. E. Rhodes, Some theorems on weakly contractive maps, Nonlinear Anal., 47 (2001), 2683-2693.
Y. I. Alber, S. Guerre-Delabriere, L. Zelenko, Principle of weakly contractive maps in metric spaces, Comm. Appl. Nonlinear Anal., 5 (1998), 45-68.
Y. I. Alber, S. Reich, J. C. Yao, Iterative methods for solving fixed-point problems with nonself-mappings in Banach spaces, Abstr. Appl. Anal., 4 (2003), 193-216.
R.Ahmad and M. Dilshad,Fuzzy resolvent equation with $H(.,)-.phi-eta$-accretive operator in banach spaces, Iranian Journal of Fuzzy Systems, 12(2)(2015), 95-106.
H.Y. Lan, Y.J. Cho, R.U. Verma, Nonlinear relaxed cocoercive variational inclusions involving $(A, eta)$-accretive mappings in Banach spaces, Comput. Math. Appl., 51(2006), 1529-1538.
Zhong Bao Wanga, Xie Ping Ding $H-(.,)-.eta$-accretive operators with an application for solving set-valued variational inclusions in Banach spaces, Computers and Math ematics with Applications, 59 (2010) 1559-1567.
Yun-Zhi Zou, Nan-Jing Huang $H-(.,$.$) -accretive opera-$ tor with an application for solving variational inclusions in Banach spaces, Applied Mathematics and Computation, $204(2008), 809-816$.
Ya-Ping Fang and Nan-Jing Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett., $17(6)(2004), 647-653$.
Jian-Wen Peng and Dao-Li Zhu and Xiao-Ping Zheng, Existence of solutions and convergence of a multistep iterative algorithm for a system of variational inclusions with $(H, eta)$-accretive operators, Fixed Point Theory Appl., 2007, Art. ID 93678, $20 mathrm{pp}$.
Jian-Wen Peng and Dao-Li Zhu, Nonlinear mappings of nonexpansive and accretive type in Banach spaces, Bull. Amer.Math. Soc., 73(1967), 875-882.
T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19(1967), 508-520.
- NA
Similar Articles
- D. K. Thakkar , P. Jamvecha, About m-domination number of graphs , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.