Estimation of certain integrals with extended multi-index Bessel function
Downloads
DOI:
https://doi.org/10.26637/MJM0702/0011Abstract
This article is refers to the study of the generalized multiindex Bessel functions, which play a ubiquitous role in wide range of diverse fields such as acoustic field, electromagnetism, heat, hydrodynamics, wave motion, elasticity and optical science. Here we aim at presenting an extension of generalized multi-index Bessel function and established some interesting integral transforms involving the extended generalized multi-index Bessel function, which are expressed in terms of generalized Wright hypergeometric function ${ }_r \Psi_s[\cdot]$ and Fox $\mathrm{H}$-function. We also point out their relevance with known results.
Keywords:
Generalized multiindex Bessel function, Fox-Wright function, Fox-H function and IntegralsMathematics Subject Classification:
Mathematics- Pages: 206-212
- Date Published: 01-04-2019
- Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
M.A. Al-Bassam and Y.F. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7 (1995), 69-88.
M.A. Abouzaid, A.H. Abusufian and K.S. Nisar, Some unified integrals associated with generalized BesselMaitland function, International Bulletin of Mathematical Research, 3 (2016), 18-23.
J. Choi, P. Agarwal, S. Mathur and S.D. Purohit, Certain new integral formulas involving the generalized Bessel functions, Bull. Korean Math. Soc., 51 (4) (2014), 9951003.
J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler function, Filomet, 30 (1) (2016), 1931-1939.
J. Edward, A treatise on the integral calculus, Chelsea Publication Company, New York, II (1922).
C. Fox, The $mathrm{G}$ and $mathrm{H}$ functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc., 98 (1961), 395-429.
V.S. Kiryakova, Multiple (multi-index) Mittag-Leffler functions and relation to generalized fractional calculus, J. Comput. Appl. Math., 118 (2000), 241-259.
M. Kamarujjama and O. Khan, Computation of new class of integrals involving generalized Galue type Struve function, J. Comput. Appl. Math., 351 (2019), 228-236.
O. Khan, M. Kamarujjama and N.U. Khan, Certain integral transforms involving the Product of Galue type StruvefFunction and Jacobi polynomial, Palestine Journal of Mathematics, (Accepted), 1-9.
M. Kamarujjama, N.U. Khan and O. Khan, The generalized p-k-Mittag-Leffler function and solution of fractional kinetic equations, The J. Analysis, in press, 1-18. https://doi.org/10.1007/s41478-018-0160-z.
N.U. Khan, T. Usma and M. Ghayasuddin, Some integrals associated with multiindex Mittag-Leffler functions, $J$. Appl. Math. Informatics, 34 (2016), 249-255.
N.U. Khan, M. Ghayasuddin, W.A. khan and Sarvat Zia, Certain unified integral involving generalized BesselMaitlnd function, South East Asian J. of Math. Math. Sci., 11 (2) (2015), 27-36.
N.U. Khan and M. Ghayasuddin, Study of unified double integral associated with generalized Bessel-Maitland function, Pure and Applied Math. Letters, 2016 (2015), 15-19.
T.M. MacRobert, Beta functions formulas and integrals involving E-function, Math. Annalen, 142 (1961), 450452.
F. Oberhettinger, Tables of Mellin Transforms, Springer, New York (1974).
H.M. Srivastava ans Z. Tomovski, Fractional Calculus with an integral operator containing generalized MittagLeffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-110.
H.M. Srivastava and H.L. Manocha, A Treatise on generating functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York (1984).
R.K. Saxena and K. Nishimoto, N-fractional calculus of generalized Mittag-Leffler function, J. Fract. Calc., 37 $(2010), 43-52$.
E.M. Wright, The asymptotic expansion of the generalized Bessel function, J. Londan. Math. Soc., 10 (1935), $257-270$.
E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series, Philos. Trans. Roy. Soc. Londan, 238 (1940), 423-451.
E.M. Wright, The asymptotic expansion of the generalized hypergeometric function II, Proc. Londan. Math. Soc., 46 (1) (1940), 389-408.
- NA
Similar Articles
- Syamal K. Sen, J. Vasundhara Devi, R.V.G. Ravi Kumar, New limit definition of fractional derivatives: Toward improved accuracy and generalization , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.