On the anti fuzzy subsemirings under t-norms

Downloads

DOI:

https://doi.org/10.26637/MJM0702/0022

Abstract

In this paper we introduce anti T -fuzzy subsemirings and anti T -product of two fuzzy sets which can be regarded as a generalization of anti fuzzy subgroups under t-norms.

Keywords:

Anti-T-fuzzy subsemiring, anti-T-product and homomorphism

Mathematics Subject Classification:

Mathematics
  • B. Anitha Department of Mathematics, Government Arts College, C. Mutlur, Chidambaram-608102, Tamil Nadu, India.
  • Pages: 295-297
  • Date Published: 01-04-2019
  • Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)

A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971) 512-517.

J.M. Anthony and H. Sherwood, Fuzzy groups redefined, J. Math. Anal. Appl., 69 (1979) 124-130.

J.M. Anthony and H. Sherwood, A characterization of fuzzy subgroups, Fuzzy Sets and Systems, 7 (1982) $297-$ 305.

L.A. Zadeh, Fuzzy Set, Information and Control, 8 (1965) $338-353$.

M.T. Abu Osman, Some properties of fuzzy subgroups, $J$. Sains Malaysiana, 12 (2) (1984) 155-163.

M.T. Abu Osman, On some products of fuzzy subgroup, Fuzzy Sets and Systems, 24 (1987) 79-86.

$mathrm{S}$. Seesa, On fuzzy subgroups and fuzzy ideals under triangular norm, Fuzzy Sets and Systems, 13 (1984) 95100 .

R. Biswas, Fuzzy subgroups and anti subgroups, Fuzzy Sets and Systems, 35 (1990) 121-124.

Zhu Nande, The homomorphism and isomorphism of fuzzy groups, Fuzzy Math., 4 (2) (1984) 21-28.

Wu Wangming, $t$-norm, $t$-conorm and pseudocomplement, J. Shanghai Normal Univ., 4 (1984) 1-10.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2019

How to Cite

B. Anitha. “On the Anti Fuzzy Subsemirings under T-Norms”. Malaya Journal of Matematik, vol. 7, no. 02, Apr. 2019, pp. 295-7, doi:10.26637/MJM0702/0022.