Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equations

Downloads

DOI:

https://doi.org/10.26637/MJM0702/0026

Abstract

In this study, we use the contraction mapping principle to obtain the existence, interval of existence and uniqueness of solutions for nonlinear hybrid implicit Caputo fractional differential equations. We also use the generalization of Gronwall’s inequality to show the estimate of the solutions.

Keywords:

Implicit fractional differential equations, Caputo fractional derivatives, fixed point theorems, existence, uniqueness

Mathematics Subject Classification:

Mathematics
  • Pages: 314-317
  • Date Published: 01-04-2019
  • Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)

R. P. Agarwal, Y. Zhou, Y. He, Existence of fractional functional differential equations, Computers and Mathematics with Applications, 59 (2010), 1095-1100.

B. Ahmad, S. K. NTouyas, Initial-value problems for fractional differential equations, Electronic Journal of Differential Equations, 2014(161) (2014), 1-8.

B. Ahmad, S. Sivasundaram, Some existence results for fractional integro-differential equations with nonlocal conditions, Communications in Applied Analysis, 12 (2008), 107-112.

H. Boulares, A. Ardjouni, Y. Laskri, Positive solutions for nonlinear fractional differential equations, Positivity, $21(2017), 1201-1212$.

H. Boulares, A. Ardjouni, Y. Laskri, Stability in delay nonlinear fractional differential equations, Rend. Circ. Mat. Palermo, 65 (2016), 243-253.

$mathrm{K}$. Diethelm, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer-verlag, Berlin, Heidelberg, 2010.

J. Dong, Y. Feng and J. Jiang, A note on implicit fractional differential equations, Mathematica Aeterna, 7(3) (2017), 261-267.

D. Henry, Geometric theory of semi linear parabolic equations, Springer-Verlag, Berlin, Heidelberge, New York, 1981.

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies 204, Editor: Jan Van Mill, Elsevier, Amsterdam, The Netherlands, 2006.

K. D. Kucche, J. J. Nieto and V. Venktesh, Theory of nonlinear implicit fractional differential equations, Differ. Equ. Dyn. Syst., DOI 10.1007/s12591-016-0297-7.

K. D. Kucche, S. T. Sutar, On existence and stability results for nonlinear fractional delay differential equations, Bol. Soc. Paran. Mat. (3s.) v., 36(4) (2018), 55-75.

${ }^{[12]}$ K. D. Kucche, S. S. Sutar, Stability via successive approximation for nonlinear implicit fractional differential equations, Moroccan J. Pure Appl. Anal., 3(1) (2017), $36-55$.

I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.

S. T. Sutar, K. D. Kucche, Global existence and uniqueness for implicit differential equations of arbitrary order, Fractional Differential Calculus, 5(2) (2015), 199-208.

J. Wang, L. Lv, Y. Zhou, New concepts and results in stability of fractional differential equations, Commun Nonlinear Sci Numer Simulat, 17 (2012), 2530-2538.

  • NA

Metrics

Metrics Loading ...

Published

01-04-2019

How to Cite

Abdelouaheb Ardjouni, and Ahcene Djoudi. “Initial-Value Problems for Nonlinear Hybrid Implicit Caputo Fractional Differential Equations”. Malaya Journal of Matematik, vol. 7, no. 02, Apr. 2019, pp. 314-7, doi:10.26637/MJM0702/0026.