Some new results on the connected sum of certain digital surfaces

Downloads

DOI:

https://doi.org/10.26637/MJM0702/0027

Abstract

In this paper, we construct some new digital surfaces from the topological sum of two digital surfaces. Also, we compute the digital simplicial homology groups of these digital surfaces. We calculate the Euler characteristics of certain digital connected surfaces. Moreover, we obtain some results of Euler characteristics of certain minimal simple closed surfaces.

Keywords:

Digital surface, simplicial homology groups, connected sum, Euler characteristics

Mathematics Subject Classification:

Mathematics
  • Ismet Cinar Department of Mathematics, Ege University, Bornova, Izmir, 35100, Turkey.
  • Ismet KARACA Department of Mathematics, Ege University, Bornova, Izmir, 35100, Turkey.
  • Pages: 318-325
  • Date Published: 01-04-2019
  • Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)

H. Arslan, I. Karaca and A. Oztel, Homology groups of n-dimensional digital images, XXI-Turkish Natl. Math. Sympos., B (2008), 1-13.

G. Bertrand, Simple points, topological numbers and geodesic neighborhoods in cubic grids, Pattern Recogn. Lett., 15(1994), 1003-1011.

G. Bertrand and R. Malgouyres, Some topological properties of discrete surfaces, J. Math. Imaging Vis., 11(1999), 207-211.

L. Boxer, Digitally continuous functions, Pattern Recogn. Lett., 15(1994), 833-839.

L. Boxer, A classical construction for the digital fundamental group, J. Math. Imaging Vis., 10(1999), 51-62.

L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vis., 24(2006), 167-175.

L. Boxer, Digital products, wedges, and covering spaces, J. Math. Imaging Vis., 25(2006), 169-171.

L. Boxer, I. Karaca and A. Oztel, Topological invariant in digital images, J. Math. Sci. Adv. Appl., 11 (2011), 109140.

G. Burak and I. Karaca, Digital Borsuk-Ulam Theorem, Bull. Iranian Math. Soc., 43(2017), 477-499.

E. U. Demir, and I. Karaca, Simplicial homology groups of certain surfaces, Hacet. J. Math. Stat., 44(5)(2015), $1011-1022$.

E. U. Demir, and I. Karaca, An Algorithm for computing digital cohomology groups, App. Math. Inf. Sci., $10(3)(2016), 1017-1025$.

L. Chen, Discrete surfaces and manifolds, Sci. Prac. Comp., Rockville, MD(2004).

O. Ege and I. Karaca, Fundamental properties of digital simplicial homology groups, Amer. J. Comput. Technol. Appl., 1(2)(2013), 25-41.

O. Ege and I. Karaca, Cohomology theory for digital images, Rom. J. Inf. Sci. Technol., 16(1)(2013), 10-28.

O. Ege, I. Karaca, M. E. Ege, Relative homology groups of digital images, App. Math. Inf. Sci., 8(5)(2014), 23372345 .

O. Ege and I. Karaca, Digital cohomology operations, App. Math. Inf. Sci., 9(4)(2015), 1953-1960.

O. Ege, I. Karaca, Digital uniform spaces, Celal Bayar Uni. J. Sci., 12(2)(2016), 129-134.

O. Ege and I. Karaca, Some properties of digital $H$ spaces, Turkish J. Electr. Eng. Comput. Sci, 24(3)(2016), $1930-1941$

O. Ege and I. Karaca, Digital fibrations, Proc. Natl. Acad. Sci. India Sec. A., 87(1)(2017), 109-114..

S. E. Han, Connected sum of digital closed surfaces, Inf. Sci., $176(2006), 332-348$.

G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graph. Models Image Process, 55(1993), 381-396.

I. Karaca and G. Burak, Simplicial relative cohomology rings of digital images, App. Math. Inf. Sci., $8(5)(2014)$, $2375-2387$.

I. Karaca and I. Cinar, The cohomology structure of digital Khalimsky spaces, Rom. J. Math. Comput. Sci., $8(2018), 110-128$.

8 T. Y. Kong, A digital fundamental group, Comput. Graph., 13(1989), 159-166.

A. Rosenfeld, Digital topology, Amer. Math. Monthly, $86(1979), 76-87$

A. Rosenfeld, Continuous functions on digital pictures, Pattern Recogn. Lett., 4(1986), 177-184.

E. H. Spanier, Algebraic Topology. Springer-Verlag, New York(1966).

  • NA

Similar Articles

You may also start an advanced similarity search for this article.

Metrics

Metrics Loading ...

Published

01-04-2019

How to Cite

Ismet Cinar, and Ismet KARACA. “Some New Results on the Connected Sum of Certain Digital Surfaces”. Malaya Journal of Matematik, vol. 7, no. 02, Apr. 2019, pp. 318-25, doi:10.26637/MJM0702/0027.