A frictionless contact problem for elastic-visco- plastic materials with adhesion and thermal effects
Downloads
DOI:
https://doi.org/10.26637/MJM0702/0028Abstract
We consider a mathematical problem for frictionless contact between a thermo-elastic-viscoplastic body with adhesion and an obstacle. We employ the thermo-elastic-viscoplastic with damage constitutive law for the material. The evolution of the damage is described by an inclusion of parabolic type. The evolution of the adhesion field is governed by the differential equation $\dot{\beta}=H_{a d}\left(\beta, \xi_\beta, R_v\left(u_v\right), R_\tau\left(u_\tau\right)\right)$. We establish a variational formulation for the model and we prove the existence of a unique weak solution to the problem. The proof is based on a classical existence and uniqueness result on parabolic inequalities, differential equations and fixed point arguments.
Keywords:
Damage, adhesion, normal compliance, temperature, elastic-visco-plastic materialsMathematics Subject Classification:
Mathematics- Pages: 326-337
- Date Published: 01-04-2019
- Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
A. Amassad and C. Fabre, Existence for Viscoplastic Contact with Coulomb Friction Problems, Int. J. Math. Math. Sci. 32(2002), 411-437.
A. Amassad, C. Fabre and M. Sofonea, A Quasistatic Viscoplastic Contact Problem with Normal Compliance and Friction, IMA Journal of Applied Mathematics, 69(2004), $463-482$.
Y. Ayyad and M. Sofonea, Analysis of Two Dynamic Frictionless Contact Problems for Elastic-Visco-Plastic Materials, Electronic Journal of Differential Equations, Vol. 2007(2007), No. 55, pp.1-17.
C. Baiocchi and A. Capelo, Variational and Quasivariational Inequalities: Application to Free Boundary Problems, Wiley-Interscience, Chichester-New York; 1984.
H. Brézis, Equations et Inéquations Non Linéaires dans les Espaces en Dualité, Annale de l'Institut Fourier, Tome $18, mathrm{n}^{circ} 1,(1968)$, p. $115-175$.
O. Chau, J. R. Fernández, M. Shillor, M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion, J. Comput. Appl. Math, 159, pp. 431-465, 2003.
O. Chau, M. Shillor, M. Sofonea, Dynamic frictionless contact with adhesion, Z. Angew. Math.Phys., 55, pp. $32-47,2004$.
O. Chau, J.R. Fernández, W. Han, M. Sofonea, A frictionless contact problem for elastic-visco-plastic materials with normal compliance and damage, Comput. Methods Appl. Mech. Eng., 191, pp. 5007-5026, 2002
N. Cristescu and I. Suliciu, Viscoplasticity, Martinus Nijhoff Publishers, Editura Tehnica, Bucharest, (1982).
J. R. Fernández-García, M. Sofonea and J. M. Viaño, A Frictionless Contact Problem for Elastic-Viscoplastic Materials with Normal Compliance, Numerische Mathematik, 90 (2002), 689-719.
M. Frémond, Adhérence des solides, J. Mécanique Théorique et Appliquée, 6, pp. 383-407, 1987.
M. Frémond, Equilibre des structures qui adhèrent à leur support, C. R. Acad. Sci. Paris, Sér. II, 295, pp. 913-916, 1982.
M. Frémond, B. Nedjar, Damage in concrete: The unilateral phenomenon, Nucl. Eng. Des., 156, pp. 323-335, 1995.
M. Frémond and B. Nedjar, Damage, Gradient of Damage and Principle of Virtual Work, Int. J. Solids Structures, 33 (8),1083-1103. (1996).
P. Germain, Cours de Mécanique des Milieux Continus, Masson et Cie, Paris, (1973).
T. Hadj ammar, B. Benabderrahmane and S. Drabla, Frictional contact problem for electro-viscoelastic materials with long-term memory, damage, and adhesion, Elect. J. Diff. Equ., 222 (2014), 01-21.
T. Hadj ammar, A dynamic problem with adhesion and damage in electro-elasto-viscoplasticity, Palestine Jour. nal of Mathematics Vol. 5 (2016), 1-22.
I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford University Press, Oxford, 1994.
F. Messelmi, B. Merouani and M. Meflah, Nonlinear Thermoelasticity Problem, Analele Universitătii Oradea, Fasc. Mathematica, Tome XV (2008), 207-217.
F. Messelmi, A. Merouani and H. Abdelaziz, QuasiStatic Linear Thermo-Viscoelastic Process with Irregular Viscous Dissipation, Adv. Appl. Math. Mech., 94,(2017) pp. 924-943
J. Nečas, and I. Hlaváček, Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Elsevier Sci. Pub. Comp, Amsterdam, Oxford, New York, 1981.
J. Nečas and J. Kratochvil, On Existence of the Solution Boundary Value Problems for Elastic-Inelastic Solids, Comment. Math. Univ. Carolinea, 14, 755-760, (1973).
M. Raous, L. Cangémi, M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact, Comput. Methods Appl. Mech. Eng., 177, pp. 383-399, 1999.
M. Rochdi, M. Shillor and M. Sofonea, A Quasistatic Viscoelastic Contact Problem with Normal Compliance and Friction, Journal of Elasticity, 51 (1998), 105-126.
J. Rojek, J. J. Telega, Contact problems with friction, adhesion and wear in orthopaedic biomechanics. I: General developments, J. Theor. Appl. Mech., 39, pp. 655-677, 2001
M. Selmani, L. Selmani, Analysis of a frictionless contact problem for elastic-viscoplastic material.Nonlinear Analysis: Modelling and Control, 2012, Vol. 17, No. 1, $99-117$
M. Sofonea, Quasistatic Processes for ElasticViscoplastic Materials with Internal State Variables, Annales Scientifiques de l'Université Clermont-Ferrand 2. Tome 94, Série Mathématiques, n 25. p. 47-60, $(1989)$.
M. Sofonea, Functional Methods in Thermo-ElastoVisco-Plasticity, Ph. D. Thesis, Univ of Bucharest, (1988) (in Romanian).
M. Sofonea, W. Han, M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Dam- age, Pure and Applied Mathematics, Vol. 276, Chapman, Hall/CRC Press, New York, 2006.
P. Suquet, Plasticité et homogénéisation, Ph.D. thesis, Université Pierre et Marie Curie, Paris 6, 1982.
- NA
Similar Articles
- Abdelouaheb Ardjouni , Ahcene Djoudi , Initial-value problems for nonlinear hybrid implicit Caputo fractional differential equations , Malaya Journal of Matematik: Vol. 7 No. 02 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.