The generalized $B$ curvature tensor on $(L C S)_n$-manifolds
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0003Abstract
The present paper deals with the study of generalized $B$ curvature tensor on $(L C S)_n$-manifolds. Here we describe flatness, semisymmetry and recurrent properties on $(L C S)_n$-manifolds. Moreover we consider the conditions $B \cdot R=0, B \cdot B=0$ and $B \cdot S=0$ and obtained interesting results
Keywords:
Lorentzian metric, $(LCS)_n$-manifolds, semisymmetric, φ-recurrent, η-Einstein manifoldMathematics Subject Classification:
Mathematics- Pages: 383-387
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
E. Cartan, Sur une classe remarquable d'espaces de Riemannian, Bll. Soc. Math. France, 54 (1926), 214-264.
U. C. De, A, A. Shaikh, and A. F. Yaliniz, On $phi$-recurrent Kenmotsu manifold, Turkish. J. of Sci, 12(1989), 151-156.
Ishii, Y., On conharmonic transformations, Tensor(N. S.), 7 (1957), 73-80.
K. Matsumoto, On Lorentzian paracontact manifolds, Bull. Yamagata Univ. Natur. Sci, 12(2) (1989),151156.
B.O'. Neil, Semi Riemannian Geometry, Academic press, Newyork, (1983).
A. A. Shaikh, On Lorentzian almost Paracontact manifolds with a structure of the concircular type, Kyungpook Math. J, 43(2003), 305-314.
A. A. Shaikh, and K. K. Baisha, On Conircular Structure Spacetimes, J. Math. Stat., 1(2005), 129-132.
A. A. Shaikh, and K. K. Baisha, On Conircular Structure Spacetimes II, American Journal of Applied Science, 3(4) $(2006), 1790-1794$.
A. A. Shaikh, and T. Q. Binh, On Weakly Symmetric (LCS $)_n$-manifolds, J. Adv. Math. Studies, 2(2009), 103118.
A. A. Shaikh, and H. Kundu, On Equivalency of Various Geometric Structures, J. geom., 105(2014), 139-165.
Venkatesha, and R. T. Naveen Kumar, Some symmetric Properties on $(text { LCS })_n$-manifolds, Kyungpook Math. J, 55(2015), 149-156.
K. Yano, Concircular geometry, Proc. Imp. Acad., Tokyo, 16 (1940), 195-200.
K. Yano and M. Kon, Structures of manifolds, World Scientific Publishing, Singapore 1984.
K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group, J. Diff. Geom.2 (1968), 161-184.
- NA
Similar Articles
- Govindasamy Ayyappan, Gunasekaran Nithyakala, Oscillation of second order nonlinear difference equations with super-linear neutral term , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
- B. Kamaraj, R. Vasuki , Oscillation criteria for nonlinear difference equations with superlinear neutral term , Malaya Journal of Matematik: Vol. 5 No. 03 (2017): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.