On the coefficients of some classes of multivalent functions related to complex order
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0004Abstract
Let $R^b(A, B, p),(b \in C /\{0\})$ denote the class of functions of the form $f(z)=z^p+\sum_{n=p+1}^{\infty} a_n z^n$ regular in the unit $\operatorname{disc} E=\{z:|z|<1\}$, such that
$$
p+\frac{1}{b}\left\{\frac{f^{\prime}(z)}{z^{p-1}}-p\right\}=\frac{p+A p w(z)}{1+B w(z)}, z \in E
$$
where $A$ and $B$ are fixed number $-1 \leq B<A \leq 1$ and $w(0)=0,|w(z)|<1$.
In this paper, coefficient estimates, distortion theorem and maximization theorem for the class $R_\lambda^b(A, B, p)$ are determined, where $R_\lambda^b(A, B, p)$ denote the class of functions $g(z)$ analytic and multivalent in the unit disc $E$ defined by
$$
g(z)=(1-\lambda) z^p+\lambda f(z), f(z) \in R^b(A, B, p) .
$$
Keywords:
Analytic, Univalent, Multivalent.Mathematics Subject Classification:
Mathematics- Pages: 388-392
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc., 39 (1973), 357-361.
J. Clunie, On meromorphic schlicht functions, J. London Math. Soc., 34 (1959), 215-229.
J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc., 35 (1960), 229-233.
Dashrath, On some classes related to spiral-like univalent and multivalent functions, Ph.D. Thesis, Kanpur University, Kanpur, (U.P.), India, 1983.
K. K. Dixit and A. L. Pathak, On a class of multivalent functions, Ganita, 60 (1) (2009), 15-21.
K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26 (9) (1995), 889-896.
K. K. Dixit and V. Chandra, On the coefficients of some classes of analytic functions related to complex order, Bull. Cal. Math. Soc., 101 (4) (2009), 351-358.
R. M. Goel and B. S. Mehrok, A subclass of univalent functions, J. Austral Math. Soc., 35 (1983), 1-17.
W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 17 (1969), 633-637.
O. P. Juneja and M. L. Mogra, A class of univalent functions, Bull. Sci. Math., 103 (4) (1979), 435-447.
F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer: Math. Soc., 20 (1) (1969), 8-12.
T. R. Mazur, On some extremal problems in the class of functions with bounded rotation, Scientific Bulletin of Lodz, Technical Univ. Math., 9 (1977), 77-88.
T.R. Mazur, On the coefficients of convex combination of certain Holomorphic functions, Complex Analysis, App. 83. Sofia (1985), 161-165.
M. A. Nasr, On the radius of convexity of convex combination of certain analytic functions, Glasnik mathematicki, 10 (2) (1975), 257-262.
K. S. Padmanabhan, On a certain class of functions whose derivatives have a positive real part in the unit disc, $A n n$. Polon. Math., 23 (1970), 73-81.
- NA
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.