On the coefficients of some classes of multivalent functions related to complex order

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0004

Abstract

Let $R^b(A, B, p),(b \in C /\{0\})$ denote the class of functions of the form $f(z)=z^p+\sum_{n=p+1}^{\infty} a_n z^n$ regular in the unit $\operatorname{disc} E=\{z:|z|<1\}$, such that
$$
p+\frac{1}{b}\left\{\frac{f^{\prime}(z)}{z^{p-1}}-p\right\}=\frac{p+A p w(z)}{1+B w(z)}, z \in E
$$
where $A$ and $B$ are fixed number $-1 \leq B<A \leq 1$ and $w(0)=0,|w(z)|<1$.
In this paper, coefficient estimates, distortion theorem and maximization theorem for the class $R_\lambda^b(A, B, p)$ are determined, where $R_\lambda^b(A, B, p)$ denote the class of functions $g(z)$ analytic and multivalent in the unit disc $E$ defined by
$$
g(z)=(1-\lambda) z^p+\lambda f(z), f(z) \in R^b(A, B, p) .
$$

Keywords:

Analytic, Univalent, Multivalent.

Mathematics Subject Classification:

Mathematics
  • A.L. Pathak Department of Mathematics, Brahmanand College, The Mall, Kanpur-208004(U.P.), India.
  • K.K. Dixit Department of Mathematics, Janta College, Bakewar, Etawah-208024(U.P.), India.
  • Saurabh Porwal Department of Mathematics, Sri Radhey Lal Arya Inter College, Ehan, Hathras-204101, (U.P.), India. https://orcid.org/0000-0003-0847-3550
  • R. Tripathi Department of Mathematics, Brahmanand College, The Mall, Kanpur-208004(U.P.), India.
  • Pages: 388-392
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

T. R. Caplinger and W. M. Causey, A class of univalent functions, Proc. Amer. Math. Soc., 39 (1973), 357-361.

J. Clunie, On meromorphic schlicht functions, J. London Math. Soc., 34 (1959), 215-229.

J. Clunie and F. R. Keogh, On starlike and convex schlicht functions, J. London Math. Soc., 35 (1960), 229-233.

Dashrath, On some classes related to spiral-like univalent and multivalent functions, Ph.D. Thesis, Kanpur University, Kanpur, (U.P.), India, 1983.

K. K. Dixit and A. L. Pathak, On a class of multivalent functions, Ganita, 60 (1) (2009), 15-21.

K. K. Dixit and S. K. Pal, On a class of univalent functions related to complex order, Indian J. Pure Appl. Math., 26 (9) (1995), 889-896.

K. K. Dixit and V. Chandra, On the coefficients of some classes of analytic functions related to complex order, Bull. Cal. Math. Soc., 101 (4) (2009), 351-358.

R. M. Goel and B. S. Mehrok, A subclass of univalent functions, J. Austral Math. Soc., 35 (1983), 1-17.

W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 17 (1969), 633-637.

O. P. Juneja and M. L. Mogra, A class of univalent functions, Bull. Sci. Math., 103 (4) (1979), 435-447.

F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer: Math. Soc., 20 (1) (1969), 8-12.

T. R. Mazur, On some extremal problems in the class of functions with bounded rotation, Scientific Bulletin of Lodz, Technical Univ. Math., 9 (1977), 77-88.

T.R. Mazur, On the coefficients of convex combination of certain Holomorphic functions, Complex Analysis, App. 83. Sofia (1985), 161-165.

M. A. Nasr, On the radius of convexity of convex combination of certain analytic functions, Glasnik mathematicki, 10 (2) (1975), 257-262.

K. S. Padmanabhan, On a certain class of functions whose derivatives have a positive real part in the unit disc, $A n n$. Polon. Math., 23 (1970), 73-81.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2019

How to Cite

A.L. Pathak, K.K. Dixit, Saurabh Porwal, and R. Tripathi. “On the Coefficients of Some Classes of Multivalent Functions Related to Complex Order”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 388-92, doi:10.26637/MJM0703/0004.