On chromatic transversal domination in graphs
Downloads
DOI:
https://doi.org/10.26637/MJM0703/0009Abstract
A proper $k$ - coloring of a graph $G$ is a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$ such that $f(u) \neq f(v)$ for all $u v \in E(G)$. The color class $S_i$ is the subset of vertices of $G$ that is assigned to color $i$. The chromatic number $\chi(G)$ is the minimum number $k$ for which $G$ admits proper $k$ - coloring. A color class in a vertex coloring of a graph $G$ is a subset of $V(G)$ containing all the vertices of the same color. The set $D \subseteq V(G)$ of vertices in a graph $G$ is called dominating set if every vertex $v \in V(G)$ is either an element of $D$ or is adjacent to an element of $D$. If $\mathscr{C}=\left\{S_1, S_2, \ldots, S_k\right\}$ is a $k$ - coloring of a graph $G$ then a subset $D$ of $V(G)$ is called a transversal of $\mathscr{C}$ if $D \cap S_i \neq \phi$ for all $i \in\{1,2, \ldots, k\}$. A dominating set $D$ of a graph $G$ is called a chromatic transversal dominating set (cdt - set) of $G$ if $D$ is transversal of every chromatic partition of $G$. Here we prove some characterizations and also investigate chromatic transversal domination number of some graphs.
Keywords:
Coloring, Domination, Chromatic Transversal Dominating SetMathematics Subject Classification:
Mathematics- Pages: 419-422
- Date Published: 01-07-2019
- Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
B. Basavanagoud, V. R. Kulli, V. V. Teli, Equitable Total Domination in Graphs, Journal of Computer and Mathematical Science, $mathbf{5}(2), 2014,235$ - 241.
C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.
E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total Domination in Graphs, Networks, 10, 1980, 211 - 219.
T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.
L. B. Michaelraj, S. K. Ayyaswamy, S. Arummugam, Chromatic Transversal Dominatin in Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 75, 2010, $33-40$.
O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38, $1962,206-212$.
V. Swaminathan, K. M. Dharmalingam, Degree Equitable Domination on Graphs, Kragujevak Journal of Mathematics, 35(1), 2011, 191 - 197.
S. K. Vaidya, A. D. Parmar, Some New Results on Total Equitable Domination in Graphs, Journal of Computational Mathematica. 1(1), 2017, 98-103.
S. K. Vaidya, A. D. Parmar, On Total Domination and Total Equitable Domination in graphs, Malaya Journal of Matematik. 6(2), 2018, 375-380.
D. B. West, Introduction to Graph Theory, Prentice Hall, 2003.
P. Zhang, Color-Induced Graph Colorings, 1/e, Springer, 2015.
- NA
Similar Articles
- Archana K. Prasad , S.S.Thakur , Soft almost regular spaces , Malaya Journal of Matematik: Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)
You may also start an advanced similarity search for this article.
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 MJM
This work is licensed under a Creative Commons Attribution 4.0 International License.