On chromatic transversal domination in graphs

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0009

Abstract

A proper $k$ - coloring of a graph $G$ is a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$ such that $f(u) \neq f(v)$ for all $u v \in E(G)$. The color class $S_i$ is the subset of vertices of $G$ that is assigned to color $i$. The chromatic number $\chi(G)$ is the minimum number $k$ for which $G$ admits proper $k$ - coloring. A color class in a vertex coloring of a graph $G$ is a subset of $V(G)$ containing all the vertices of the same color. The set $D \subseteq V(G)$ of vertices in a graph $G$ is called dominating set if every vertex $v \in V(G)$ is either an element of $D$ or is adjacent to an element of $D$. If $\mathscr{C}=\left\{S_1, S_2, \ldots, S_k\right\}$ is a $k$ - coloring of a graph $G$ then a subset $D$ of $V(G)$ is called a transversal of $\mathscr{C}$ if $D \cap S_i \neq \phi$ for all $i \in\{1,2, \ldots, k\}$. A dominating set $D$ of a graph $G$ is called a chromatic transversal dominating set (cdt - set) of $G$ if $D$ is transversal of every chromatic partition of $G$. Here we prove some characterizations and also investigate chromatic transversal domination number of some graphs.

Keywords:

Coloring, Domination, Chromatic Transversal Dominating Set

Mathematics Subject Classification:

Mathematics
  • S. K. Vaidya Department of Mathematics, Saurashtra University, Rajkot - 360 005, Gujarat, India.
  • A. D. Parmar Atmiya Institute of Technology and Science for Diploma Studies, Rajkot - 360 005, Gujarat, India.
  • Pages: 419-422
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

B. Basavanagoud, V. R. Kulli, V. V. Teli, Equitable Total Domination in Graphs, Journal of Computer and Mathematical Science, $mathbf{5}(2), 2014,235$ - 241.

C. Berge, Theory of Graphs and its Applications, Methuen, London, 1962.

E. J. Cockayne, R. M. Dawes, S. T. Hedetniemi, Total Domination in Graphs, Networks, 10, 1980, 211 - 219.

T. W. Haynes, S. T. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, 1998.

L. B. Michaelraj, S. K. Ayyaswamy, S. Arummugam, Chromatic Transversal Dominatin in Graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, 75, 2010, $33-40$.

O. Ore, Theory of graphs, Amer. Math. Soc. Transl. 38, $1962,206-212$.

V. Swaminathan, K. M. Dharmalingam, Degree Equitable Domination on Graphs, Kragujevak Journal of Mathematics, 35(1), 2011, 191 - 197.

S. K. Vaidya, A. D. Parmar, Some New Results on Total Equitable Domination in Graphs, Journal of Computational Mathematica. 1(1), 2017, 98-103.

S. K. Vaidya, A. D. Parmar, On Total Domination and Total Equitable Domination in graphs, Malaya Journal of Matematik. 6(2), 2018, 375-380.

D. B. West, Introduction to Graph Theory, Prentice Hall, 2003.

P. Zhang, Color-Induced Graph Colorings, 1/e, Springer, 2015.

  • NA

Metrics

Metrics Loading ...

Published

01-07-2019

How to Cite

S. K. Vaidya, and A. D. Parmar. “On Chromatic Transversal Domination in Graphs”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 419-22, doi:10.26637/MJM0703/0009.