Further results and applications on continuous random variables

Downloads

DOI:

https://doi.org/10.26637/MJM0703/0011

Abstract

New results and new applications of fractional calculus for continuous random variables are presented. New expectation and variance identities of order α ≥1 are established. Under a new fractional normalisation technique, other weighted random variable inequalities are generated and some classical results are deduced as special cases.

Keywords:

Integral inequalities, Riemann-Liouville integral, random variable, fractional expectation, fractional variance, fractional moment

Mathematics Subject Classification:

Mathematics
  • Pages: 429-435
  • Date Published: 01-07-2019
  • Vol. 7 No. 03 (2019): Malaya Journal of Matematik (MJM)

T. Cacoullos and V. Papathanasiou: On upper bounds for the variance of functions of random varialbes, Statist. Probab. Lett., 7 (1985), pp. 175-184.

T. Cacoullos and V. Papathanasiou: Caracterizations of distributuons by variance bounds. Math. Statist., 4 (1989), pp. 351-356.

T. Cacoullos and V. Papathanasiou: Characterizations of distributions by generalisations of variance bounds and simple proofs of the CLT, J. Statist. Plann. Inference, 63 (1997), pp. 157-171.

Z. Dahmani, A.E. Bouziane, M. Houas and M.Z. Sarikaya: New w-weighted concepts for continuous random variables with applications, Note di Matematica, 37(1) (2017), pp. 23-40.

Z. Dahmani: New applications of fractional calculus on probabilistic random variables, Acta Math. Univ. ComenianaeVol. LXXXVI, 2 (2017), pp. 299-307.

F. Goodarzi, M. Amini and G.R. Mohtashami Borzadaran: On upper bounds for the variance of functions of random variables with weighted distributions, Labachevskii Journal of Mathematics, 37(4) (2016), pp. 422-435.

R. Gorenflo, F. Mainardi: Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, (1997), pp. 223-276.

G.R. Mohtashami Borzadaran and D.N. Shanbhag: Statist. Probab. Lett., 39 (1998), pp. 109-117.

M.Z. Sarikaya, M.E. Kiris,N. Celik: Hermite-Hadamard type inequality for h-convex stochastic processes. AIP Conference Proceedings 1726, 020076 (2016).

M.Z. Sarikaya, T. Tunc, H. Budak: Simpson's type inequality for F-convex function. FACTA Univ. FUMI, 1(10), (2018), pp. 747-753.

M.Z. Sarikaya, H. Yildiz, H. Budak: On weighted Iyengar-type inequalities for conformable fractional integrals. Mathematical Sciences, 11(4), (2017), pp. 327-331.

  • NA

Metrics

PDF views
73
Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202649
|

Published

01-07-2019

How to Cite

Mohamed DOUBBI BOUNOUA, Zoubir DAHMANI, and Zakaria BEKKOUCHE. “Further Results and Applications on Continuous Random Variables”. Malaya Journal of Matematik, vol. 7, no. 03, July 2019, pp. 429-35, doi:10.26637/MJM0703/0011.